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2.3.1. Introduction

Motivation

This article will be concerned with the theory of fluctuations in plasma. .In the
previous article on the kinetic theory of waves at the Vlasov 1§vel of description, an
initial small amplitude excitation or wave in the plasma. (1n the absc?nce pf an
external driver) would simply die away (Landau or colllsmnalldamp.mg) 1f.the
plasma is stable, or grow to some level determined by some nonlinear interactions
and /or by somehow altering the background free-energy source responsible for the
growth. _ ' . .

These nonlinear mechanisms will be elaborated upon in the following articles in
this series. .

However, even in stable plasma, particle discreteness can cgnstantly re-excite
these fluctuations (Cerenkov emission by single particles, longitudinal angl transverse
bremsstrahlung from collisions of pairs of particles, etg.) s0 that even if thg mean
electric field (E(x,t) =0, for example, in thermal equxhbnum, the expectation, or
mean, (E?(x,t), e.g., will not be zero. (The terrm‘nology and notation will be
elaborated upon immediately in the following secqons.) The presence of ' these
fluctuations in general are indeed responsible for diffusion and transport in the
plasma. ' ' ' .

Even in globally stable inhomogeneous plgsmas, if the local dlsp.ersxon relgtxon
e[ k(x), w] signals only weak stability or instability then these fluctuations can rise to
locally high levels and the concomitant transport may be very laljge. ‘

The scattering of electromagnetic radiation from electron-density fluctuations has
proven a powerful diagnostic in determining the structure of plasma. For examgie,
laser-scattering is uniformly used to determine the electror} temperature gnd density
in many laboratory devices. As another example,.scattf:rmg from density fluctua-
tions in the ionosphere has led to remarkable confirmation of t_he theory of plasma
behavior, and if the launched wave is sufficiently intense [but still not strong enough
to induce parametric instabilities (electron—ion decay)] .anofher emission process,
secondary induced scattering, can dominate the determination of the fluctuation
level, and again predictions of fluctuation theqry have served remgrkgbly well.

The theory of fluctuations in a plasma was inspired by the possibility of measur-
ing ionospheric plasma density by radar backscatter suggested by Gordon (1958).
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The necessary theory was given in a series of papers by Salpeter (1960), Dougherty
and Farley (1960), Fejer (1960) and Rostoker (1961). This latter paper [see also
Dupree (1963) and Klimontovich and Silin (1962)] laid out the systematic founda-
tions of the theory of fluctuations. Much of what will be presented in this article are
more recent simplifications, clarifications, and extensions of that work (Williams,
1973; Krommes and Oberman, 1976).

This chapter remains within the confines of perturbation theory, low-order
expansion in powers of the plasma parameter, e=1/nX,, or EY/8xnT (here
T = kgT, is the temperature in energy units). Since generally only lincarly stable
plasma will be considered, this perturbation theory is usually but not always (1) valid
(see Chapters 4.1 and 4.4). Possible breakdown or indeed failure of the formulation,
and the need for renormalization, etc., will only be pointed at.

Scope of work

In Section 2.3.2, first the one- and two-time hierarchies will be developed and then
it will be shown how expectations are computed; next the irreducible cluster
expansions are introduced and then related to the Klimontovich equation for the
fluctuating microdensity.

Section 2.3.3 concerns itself with the theory of fluctuations to lowest order in ¢ for
the most part in homogeneous plasma. The relation between power spectra and
correlation functions is shown and the Kramers-Kronig relations are developed;
furthermore, the simplicity of the formulation to compute the power spectrum for
charge density and electric field fluctuations is shown, both out of and in thermal
equilibrium where the fluctuation-dissipation theorem is illustrated. In the next
subsection the kinetic equation for the one-particle distribution function for a
multi-species plasma is developed. How to include a magnetic field is pointed out in
the next subsection, and in the following subsection the expression for scattering of
small-amplitude electromagnetic waves from electron density fluctuations is derived.
Then the induced emission when the pump intensity is higher is considered, and the
scattering mechanism shifts from that due to electrons and the electronic component
of the polarization clouds around both electrons and lons, to scattering up and down
shifted from the moving ions. Here the Superposition Principle of Rostoker (1964)
[see also Krommes (1976)] is stated and employed. Some remarks on inhomogeneous
plasma will also be given.

Section 2.3.4 argues for a description of fluctuations on the kinetic time scale, and
finally Section 2.3.5 demonstrates a theory of hydrodynamic fluctuations.

2.3.2. One- and two- time hierarchies, expectations, cluster
expansions and relation to Klimontovich formalism

The hierarchy equations for correlation functions

Consider an s-species fully ionized plasma contained in a volume ¥ in which there
are N, particles of the rth species with charge e, and mass m,. Suppose that the
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plasma is neutral overall, that is

5

Y Ne,=0. 8))

r=1
Assume also that the plasma is nonrelativistic and hence that the interparticle
interactions are adequately described as electrostatic. The state of the plasma is thus
completely described by a point in I'-space, a 6N dimensional space (N = L, N,) with
one dimension for each position and each velocity coordinate of each particle in the
plasma. The entire history of the plasma is contained in the trajectory of this point
in I'-space, in principle obtainable by solving the Newtonian N-body problem. Such
a solution even if available, would contain a vast excess of detailed information
associated with the particular initial conditions of the problem. The procedure
introduced by Gibbs is to envisage an ensemble of realizations of the plasma and
attempt only to describe the evolution of ensemble averaged quantities.

We shall consider an ensemble of plasma described by the ensemble density
D (Y, 1), where Y is a point in I-space. D\ (Y,t)dY is the probability that at time ¢
there is a member of the ensemble in the volume dY around Y. Similarly, we define a
two-time ensemble density D,(Yy, t; Y, ¢) such that D,(¥y, 2, Y, 1)dY,dY is the
joint probability that a member of the ensemble is in (¥, Y, +dY,) at time ¢, and is
in (Y, Y+dY) at time ¢. Both D, and D, satisfy the Liouville equation in the Y,
variables.

3 X a
5;_‘- ngl(v”. dx

+—n g X B d
mc 0 gy,

n n

N2 ee, | D\(Y,1)
- Z e — 3 ) =0, (2)
[’n—‘ xn mnlxn xll vn Dz(Yo,to, Y,t)
noe|

where Y =(X,,...X,) and X, = (x;,v,). By is an external magnetic field. D, has a
singular initial condition,

D, (Y, to; Yo 1o) = Di(Yo, 16)8(Y = o)., (3)
whereas D, is assumed to have a smooth initial condition.
D, and D, are normalized so that

f/deYODZ(YO, te; Y, 1) =1. (4)

The preservation of these normalizations in time is guaranteed by Liouville’s
theorem.

It may be supposed without loss of generality that D, and D, are symmetric under
interchanges of like particles. Since this is clearly also a symmetry of the Hamilto-
nian, it is likewise preserved in time.

The following definitions are made:

deD|(Y,t) =1,

Lnn-r,(xhxz...Xs,;)sV’fDl(Y,t)dXHldXHz---dXN, (5)
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upon integrating D\ (Y, 1) over all except s particles of species r,, r,,...r.

F;"U’Z'”’”‘(Xl,t‘, Xé .. X;+|9tl)
=V (D, (Y,6;Y,1)d X, - dXyd X{d X, - d X, (m

upon integrating D, over all the unprimed particles except one of the species r,, and
over all except s of the primed particles of species r,, ry,...r,,,. The s primed
particles are distinct from the singled out unprimed one.

er_nfr----'x(X,,t; Xi- ”Xs’vt,)

Vs+l
ET/D2(Y”§Y',t,)dxz"'dXNdX'H"'dX;\l’ (7)

5

upon integrating D, over all unprimed particles except one of species r;, and over all

except s of the primed particles of species 7|, r,,...r,. Particle 1 is the same particle
as particle 1.

Now define §F, by
6]:5”1;"2”"JH(X]’[; Xé .. .X;+“t’)
= E e (X 6 X Xy, O) = fO (X O f770 (X - Xy, 1)

8
Finally, we define our new hierarchy of correlation functions, I}, by: o
Lyonr( Xy, to; Xy o0 X, 1)
= 857 (K103 Xy o X, )48, Q000 (K, 13 Xy - X, 1)
+ 8,0,29;0?’2’1’3“":(X0, ty; Xy, X1, Xy - X, 1)+ -
+8,, QTN (X 1oy X Xy Xy X X, ’)]/fx(Xo» to)-
9

2, and F, are the test and field particle correlation functions introduced by
Rostoker (1961). It will be shown that the combination I, of the Rostoker functions
2, and F: (1) has a simple physical interpretation; (2) occurs naturally in the
calculation of fluctuation spectra; and (3) satisfies surprisingly simple equations.

These distribution functions will first be interpreted as probabilities, and then the
equations and initial conditions that they satisfy will be derived. These Rostoker
functions may be interpreted in the following way. f,(X|,... X;, ) is the probability
density of finding particle 1 at X,, 2 at X,,... and s at X, at time ¢.
Q.(X,. 4 X, X5,...X,, ') is the conditional probability that after finding particle 1
at X, at time ¢, the same particle is found at X7 at time ¢’ and, further, particles
2- - -5 are found at Xj - - - X[, respectively. F,( X, t; X3, X;,... X, |, ") is the condi-
tional probability that after finding particle 1 at X at time ¢ the different particles
2...s5+1are found at X,,... X[ |, respectively, at time ¢". 8 F,( X, t; X;,... X[, , 1) is
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thus the change in the probability of finding particles 2- - - s +1 at X X), att
given the information that particle 1 was at X, at time . £, is thus a test particle
propagator, and 8F; 1s the response of the field particle propagator to the presence of
the test particle. Finally, I;(Xo, fo; X,, X,,...X,,t) may be interpreted as the propa-
gator in which no account is taken as to whether the particles at X (.- X, are test
particles (originating at X, t,) or field particles. It includes both the test particle and
the self-consistent response to the test particle.

The hierarchy of equations for f, are obtained by integrating the Liouville
equation (2) for D,(X,t) over all the X’s except one, two, etc., successively,
integrating by parts as necessary, and finally taking the thermodynamic limit
N,V-w,N,/V=n, constant. The result of this procedure is the familiar
Bogolubov—Bom—Green—Kirkwood—Yvon (to be referred to as BBGKY) hier-
archy (Yvon, 1935; Kirkwood, 1946, 1947; Born and Green, 1949; Green, 1952;
Bogolubov, 1962).

a 5 5 e
-+ glv,-b—: E‘,l ) 0, X By

d er,'e"j 3 1 a
-2 m, Elxi—le dv,

f;’l“'rx(Xl . X:,t)

i,j=1
i=j
s e,.'_ ’ d 1 d oer i p ,
L m,,},:,""""fdx 3x, |x— x| v, (Xi, Xy X, X', 0).

(10)

The equations for the Rostoker functions £, and F; are obtained by integrating the
Liouville equation for D, (Yo, 2o} Y, t) over all the Y variables except X, and over
successively fewer of the ¥ variables. One obtains for the test particle correlations
2.

5

l e, €8,
%_*.E(v.__‘?—.*.__‘_.vixBo._a_)_ At 9 1
1 X

S\ ax omyc I, | e ™ ax; |\x;— x|
i=j
._.a_Q’oi'l"":(X tne X, - X t)
av'_ 5 102402 1 5
s e, a1
- i‘él m, Er;n,,e,,de ax; |x;,— x|
a P 7
e AN (XlO’IO;Xl'”Xs’X’t)’ ()

v,
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and

s
+

i

e

r

1
v._a_.l___; XB'—a—‘
A\ dx mc i % Bo v, |

@l
n[v]+

r&r a 1
) 2 A

.F;rl;rz-»-r,”(Xlo’ ty; X2 ... X s l)

5

s+1 ¢
=n.ec, Z ‘ de: d _1___._ 9 on
i=2

m,

- L grinen .
dx; |x;— x| v, R (Xaos tos XKoo X1 1)

+E Sil e, fd 3 1
n,e, — X ———F
= ,m, ox; |x; — x|
d ryryer, r
.%Fsﬂ'ﬁlz i (Xlo’IOQXz"'XsHyXI’t)’ (12)

I

for the field particle correlations, F,. From (10) and (12) the equations for the field

particle perturbations 8F,, which are the same as those for the K, are readily
obtained: :

r

9 s+1 9 e, s+l e e
at (v"'a + ;X By o1 r — 21 .9
i=2 X mc dv i =2 M Ox; |x; — x| dy;

i
i=j
-61:;"1.’2""’;+I(X10,[0, X2 . e X:+1’ t)

s+1
e,

- S 9 1
rifn ,.gz m, /dX‘ dx,

[x; — x4

a rnr
. SRR AT .
&'v,-'Q‘l“l H(Xigrtos Xyo 0" Xours 1)

5

s+1

e,, a 1
+ 2 n.e. L fdXx —=
‘;‘ i§2 m’i/ dx; |x; — x|
a Fy s, r
.5;):81:;*‘"12 s+ 1 (XIO’tO;Xz"'XHl,X’,t), (13)

Combining the equations for £, and 8F, (13), and using the definition (9) of I'’s
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enables the equations for the I'’s to be written as:

s a e, d o e’:e'/ d 1 J
j—+_2l(v,-'—-— —_‘UiXBo"a—)_ )»

x,—x,| dy
T dx; | m,c o) LM, dx; |x; — x;| do

i+

sIron i ( Xy, b5 Xyo e X t)

: e"i ’ a _._1.—-

= Z’nr/e’_r §l _);:de BXi le _ xl‘
'5%115’3;1".“””()(0, to; Xy - X, X', t).

' (14)

The I, satisfy the BBGKY hierarchy! This is perhaps sorpewhat rer.nqr}(ableé 21115 f}f;
and e certainly do not. The reason lies in the' f.act that in our q§f1n1t10n oh ' e
infom;ation as to which specific particle was .o'rlgma'lly at the posmon.X0 at the [1me
{ has been sacrificed. In a moment a definition will be given of I, ; in terlgs o l}z;\in
c(;(pectation of a product of Klimontovich (1957) phase-space densities, where this

It becomes transparent. . ' .
reSIl-JIaving shown that our new hierarchy of functions satisfy the BBGKY hierarchy,

ir initi iti i initial conditions on D,, (3), will next
their initial conditions, which follow f.roAn} the initia
be determined. Using this and the definitions (7), (6), (8), and (9) of £, F, 8F, and
T, respectively, the following are obtained:

Quin (X, 1oy Xy oot X t) =fnn (X X to)8( X, — XlO)/nr,
(15)
Enirerei(Xyg, to; X300 X,y1rt0) =friree (X, Xy Xowns 1) (16)
8Fsr';r2mr’”(xloa to; Xy o Xowt ty) =fr s (X, X Xowns ty)
— ' (X5 t) f7 e (X X t0)>
(17)

sr+o.l..rs(X0. .. Xs,to) _fsrl""}(Xl M ijtO)

flro(Xoato)
—Lfsr,,.--";(Xl,...X59t0)
n, f1( X, to)

F;"mmr’(Xoa oy Xy X to) =

+ 2 8r0r,6(}(i - XO)

i=1
(18)

It will now be shown that the correlation function of any “o;l;—parti({jle” [sici (21'))1
. ) - en i
i i density, velocity, or electric field, can be wrn
macroscopic quantity such as , ;
terms of F’ , and f, alone. It is not necessary to know 8F, and £, separately.
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Expectations

The ensemble average of any phase function [ X; Y(#)], defined in six dimensional
p-space, is given by:

(X)) = [4¥D, (7,09 [X: ¥(1)] (19

=de0D1(Yo»t0)‘l’(X§Y[Yo(to)])’ (20)

by Liouville’s theorem. i is said to be a one-particle function if it can be written in
the form

N,
IR (QIEINACHIPIIPEP O] (1)
r i=1
If a one-particle function [ X; Y(¢)] is defined by
vyl =E Le X X (1)],

then the operator y,(x, 7) is given by
v, (X,1) = [dx9,(X; X,

where X/(¢) is the exact trajectory of the ith particle of species r. For example, when
¥, =0, ¥ is the phase-space microdensity of the r’ species, then

(WX, 1)) =n, f](X,1), (22)

as may be readily verified by subétituting (21) into (19) and integrating.
Similarly, any two-time phase function y,[X,, Y,(¢); X, Y(¢)] has its ensemble

average defined by:
(W2(Xo, 103 X, 1)) = [ A¥dY Dy (Yo, 103 Y, )2 [ X, Yo(10): X, ¥(0)]. (23)
The correlation function of fluctuations of a one particle operator y is thus given by
(o [x05 Y(10)] = (¥ [ Xos Y(t) DX [ X, Y ()] = (4 [ X Y(1)])))
= (¥ [ X0 Y (1) ]9 [ X Y()]) = (¥ [ Xo3 Y(1) )< [ X, Y(2)])
= T n,n b Xos 1), (X, 1)[ 8,207 ( Xo, 163 X, 1)+ F{o"( X, 13 X, 1)]

r.rn

g DR ACNHAVICAN) D ERACHVED)

=2 ”ro"r‘l’ro( Xos 1) ¥, (X, ) f1°( Xy, 1) T " ( Xy, 195 X, 1).

r, o

(24)
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To give an example of the application of (24), typical macroscopic quantities are the
ensemble average number density, momentum density, and kinetic energy density of
the rth species, when

¢,,(X,t)=8,,,fd3us,-(v), (25)
where
s5;(v)=1,mp,imv*, (26)

respectively. The time correlation of the fluctuations of these quantities arc thus
given by

nronrfd:;vosi(vo)flro(Xo,10)/d3vsj(v)rl’0;’(xo’t0; X,1). (27)

To give one further useful example, the electric field time autocorrelation is given by
(E(xp,10)E(x',0)y = T [ dXod Xf{o( Ko, 16)T{ (Ko o, X 0)
ol

e, (x5— Xg) e (x'—x)

Jx"— x|3

28
lxo — xoP ()

To reiterate, all one needs to compute the time correlations of any local (one-par-
ticle) macroscopic quantity is f, and T, the lowest members of the f and r
hierarchies, respectively. In order to solve for f; or I'y one must truncate the
hierarchies by some suitable approximate scheme.

Much work has been done using the f hierarchy to develop a closed kinetic
equation for f. To do this in a systematic fashion, one must estimate the various
terms in the hierarchy equation (10), and identify some suitable small parameter in
which to attempt an asymptotic solution. It is well known that there are three
regimes in which such a parameter is available—the Boltzmann, the weak-coupling,
and the plasma regimes—in which the small parameters are, respectively, the
number of particles within the range of one-particle interaction potential, the
interaction potential divided by the thermal energy, and the plasma parameter
[defined to be the reciprocal of the number of particles within a sphere of radius
equal to *he Debye length (nX},)]. We are concerned with the plasma regime, where
the ordering of the terms in (14) is

1:1: 2, /w, e 1, (29)

where 2, = eB/mc is the cyclotron frequency, wg = 4mne’/mis the plasma frequency

squared, when typical lengths and times have been scaled to the Debye length and
plasma period, respectively. The requirements for the plasma ordering are actually
somewhat weaker than implied here. All that is needed is that the internal electro-
static field energy density be small compared with the particle energy, that is:
E?/87nT < 1. To retain maximum generality, suppose that 2_./w, is O(1): then
strong or weak magnetic field limits may be recovered in a subsidiary expansion if
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desi .
besgc}:(cjthto};e,lhoyvever, tl}at one may not obtain the results of guiding center theory
y g the limit of arbitrarily large magnetic field, as this involves an interchange

of the order of the 1 ic fi .
nonuniform. arge magnetic field and plasma limits and this may be

Cluster expansions

First, note that th i i isfied i i i

by € f, hierarchy is satisfied identically in lowest (zeroth) order in &
:/.\' YA X, t) =f|r'(X|a t)f]"(Xz, 1)-- 'flr’(X:’ 1), (30)

provided that f satisfies the Vlasov equation:

9,9, 9
at ax TrchBO.a_v)flr(X’t)

=6 d 1 9
== Yne, [dXf(x, )L L.
m, o ¢ -[ i ’t)ax Jx — x| avf'(X’t)'

(31)
Note also that the T, hierarchy is identically satisfied in zeroth order by
[roire—r . = [7To: "
, (Xo, 103 X, X3, ) =Iyo (Xo,to;Xl,t)f,’l(X,,t)---f,’J(XS,t)
+f|'(X17f)F{°;rz(Xo,to§X2a’)f1r3"'f1r‘

+o- +f|rl(X|”)' ' 'flr“'(Xs‘l,I)Flrozr’(tho; Xs’t)’ (32)

provided that f satisfies the Vlasov e
Vlasov equation:

9,9, & 9
ar dx EEUXBO.%)FI(XO*IO;le)

e
~ > npe, [dXTO7 (X, 1.: X' 9 _1 9 .
m, r f : ( 070 ’t) Jx lx—x’l .%fl(Xst)

quation (31), and I satisfies the linearized

e
. ’ 41 " J 1 aJ
”r’er’ dX X, —— . rosr A
m, Z,' f S 1) = o T T (Xos s X,1) =0,

(33)
Ss In

Mayer
That is,

(\::tl_ll.sgn.gular in%tial condition from (18). This, together with the method’s succe
utlibrium statistical mechanics motivates the j i

: ¢ introduction of the Maver and

(1940) cluster expansion for J and a (linearized!) modification of it f}(,)r Iy

Y

f_l(l)=fx(1),
L0.2)=£0,2-1,0)£,2).
f3(1,2,3)=f3(1,2,3)-f,(1)f2(2,3)—f1(2)f2(3,1)—f1(3)f2(1,2)
) +2£(D£1(2)£,(3),
L(L20 )= £(1,2,...5)- Y (- 1)"(11—1)!fp|,;2 Sy (34)

n,p
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The sum is over all partitions p = (p,,...p,) of the set 1,2,...s into n subsets
P1s---Dy- [,(1,2) is shorthand for f;1"2( X, X;, t) etc. The sum 2P, =S

Using the property that if the particles 1 through s are divided into groups
Pi»---D,» (this is equivalent to the apparently weaker assumption of reducibility on
division into only two groups) and that the groups are widely separated in space, the
distribution function f factorizes into the form f, f, --- [, . one may show that the
function f, defined above (34) is irreducible, in the sense that it vanishes on any such
partition and separation of the particles.

Solving (34) back for the distribution functions f; in terms of their irreducible
parts gives:

f|(1)=f1(1),
£(1,2) = (A + £(1,2),
f2(1’2,3) =fx(l)f)(2)f_(3)+f1(1)f;2(2)3)+f|(2)f2(3a1)
+f1(3)£(1,2)+ /(1,2,3),
L) =F Lo (35)

Using the factorization property that
11(0’ 1,2,...5) - FPlfPZfPJ""f n+fPl[.‘l’zf;73""an+ T +f;7|sz""an—1FPn’

(36)
if the particles 1,...s are separated into n groups p,,...p,, One can show that the
following defines the irreducible parts I, of I, [the initial arguments ( Xy, t) will be
omitted in (37) and (38) for compactness]:

(1) =1,(1),
5(1,2) =L,(1,2)-I,(1) A1) - T(2) £/, (1),
1:3(1,2’3) = F3(1»2:3)"F\(l)f2(2’3)_rl(2)fz(3’ 1)_F1(3)f2(1’2)
_fl(l)F2(293)-fl(2)F2(3’1) —f1(3)F2(1’2)
+20,(1D) £ /13 +2/, (DN A B)+2£(D AR 3),
£(1,2,...5)=T,(1,2,..)= L (=1D)"(n =L, f,, .
n,p

+fp.szf}zg"'f;z,..+"'+/}n"'fp"_.rp,.)~ (37)
Solving back for I, gives:
Fl(l)=fl(l),
L,(1,2) = L(A@)+ L) /(D) +5(1,2),
;(1,2,3) = (DA /i3) + AN L(2,3)+ T, (1) /(2,3)
+(1—>2,2—>3,3—»1)+(1—+3,3—->2,2—>1),
0,2) = S (B fy eyt foBosdyy ot oo+l T3 (39)

n,p
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The equations for f, and I, may now be written usin i
: s and I g the cluster expansions (35) and
(38), and the BBGKY hierarchy (10) and (14). Only the equations up to order Aeg will

be needed, that is, for f,, f,, f;, I} o - . L
. > ’ 1» J2, 3, Iy, and I,. The low-order irred i
functions will be renamed from here on. ’ irreducible distribution

fl—)fv fz_’g, f;“’h,
f‘;-—»F, fz—-)A, E-’E.

(39)
The cluster functions f, g, h, I', and A then satisfy the following equations:
Lol 9 ) fr
Frii e ;;vaO-av)f (X,1)
P 9f 3
— (X, 1) Yne, [dxfr(x, )2 —1
m, dv ,Z '-/ i ’t)ax |x— x|
= e,. ’i 1 a rr’
mrgnr'er'_/-dx ax Ix_xrl .avg (X,X,t), (40)
d a d e a e
— 4 pe— 7o —r .— oy d
[81‘ v 8x+v 8x+m,chB° av+m,'CUXB°.§U
ee, 9 1 19 1 3
k= x (I%_m—r,ﬁ)]g()ﬂ X',1)
- e, d 1 d
= n,,, o dX“ . ’ 7
; ‘ f [(mr dx |x — x"| 3v[f(X’t)g(X’X 1)
+(X7, 0)g(X, X, 1)+ h(X, X’,X",t)])+(X<—>X’)]
d 1 1 9 1 4
tee, 7 ———of — T ’
o ox [x— %] (m, do m, av’)f(X”)f(X,t)’ (41)
J 3
—_— . P ' . r 3 r
3t+v 8x+v 3’+v ax"+mchB°'5E+ ; o'X B, aa,

e"” 7’ (9 3
oo XB(,'W—ee————l (1 9 I _6’_)

31.(1618
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e, a 1 ’ 2 "
= 0 ¥ (L A A S— X, (X, X", X" 1)
—-z’;n /dX [(m ax lx xlul av [f( ) (

+g(X, X, 0g(X", X", )+g(X, X", 0)g(X', X", 1)

+ (X", O)R(X, X, X", 1)+ k(X, X', X", X"',t)])+(X’<—> X)+{X" & X)

o 1 (12 1)
+e’e’—3;|x—x| m, dv  m, v

L1 (X ) g(X, X7, 0+ f(X, )g( X7, X, 1)]

+CyCliC perm (X’-—-) X X'> X’)+CyCllC perm (X’_’ X'—- X- X’), (42)

;] aJ e d .
a . r . I(X,,ty; X, t
(3t+° ax+m,cv><B° 3”) (%o 1o :
e, 3f(X,1) , RN
e gy Tne [AX Ty 0 X ) g o
e, 0 ‘ (o n)ed —
_.m_r%r(xo,ro;X,t)Z,n,'e,'def(X”) 9x [x— x|
1
_ & . Xy, 10; X, X'\t (43)
mr;n,e,/dX 7% x = xl A( 0> fo ),
P 9, 0 e g e g0
TR R T m.c ® v mc 0 a9
9 1 l_i_l_a)Axt X, X't
T Jx — x| (73” m,. 9’ (%o o :
31 _Li__l__f?_)
SO x k=% \m, 80 m, 9V

'[F(Xoato’ X’t)f(X,’t)'l'F(XOvtO; X,’t)f(X’t)]

9 L a[f(X,t)A(XO,tO;X’,X”,t)

e, oo L g

+ Z;n,,,e,,.de [(I dx jx—x"] do
p

+ (X DA Xy, 10 X, X', 1)+ T( Xy, t0; X7, 1)g( X, X', 1)

+F(X07t0; X!t)g(X,> Xuvt)+€(X0’t0; X) X’v X’,at)])+<X9 X’}i\
’ (44)
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The species labels on the distribution functions have been omitted. Here, and in
the future, they may be implied from the context in the following manner. Any
function of the form x (X, --- X, 1) is understood tobex" (X -+ X,, 1), and any
function of the form x(XO, ty: X, - X,, t) is understood to be x’° ne, “(Xos 1o

X,, t), where the species labels always correspond to the phase space argumenta
of the functions.

From the initial conditions on I, (18), one may readily show that T, has the
following initial conditien

fs-n(Xo» X, '-~Xs,t0)

T( Xy, t; ¥, Xy X, 1) = g
:( 0s%0 1 2 5 0) fl(Xo,lo)
fdX - X, 0) 10
+= * 2 8.,8(X - X,). (45)
fl(XO’to) o p=1 ° 0

The simplicity of this result derives from the initial conditions on I, having to be
irreducible. The cases of interest to use are the following:

g( Xy, Xy, 1) ]
T 48, —8( X - X)), 46)
(X, 1) on, (%= %) (

h(X07 le Xz’to)
f(XOsto)

g( X, X, t) 1
222 07 S(X,— X,)+8
f(XO’IO) n,o[ I‘or|( 0) roray

FI(XO’IO;XI,I())=

A(Xps to5 Xps Xy, 1) =

+

8(X, - X)),

(47)
Equation (45) may be interpreted physically as saying that at time #, the particle at
X, was a test particle, giving rise to the delta-function term, or was a member of its
shield cloud, giving rise to the g term. A similar interpretation of (46) can be made.
It is clear from this interpretation how I'| can be regarded as the propagator of a
dressed test particle. The initially singular part describes the bare particle, and the
initially smooth part describes the dressing.
The relative ordering of the terms in the f, g, and 4 equations are as follows:
1:1: 0, /w,:0:¢,
1R /o, 2 /wyex[1:0:€]:[1:0:¢]: 1,
l:l:l:l:ﬂe/wp:.Qc/wp:ﬂe/wp:e:e:8:([1:1:l:e]:[l:l:l:e]:[l:1:1:5]:1:1:),
(48)
respectively. The usual estimate has been used that f,=0(e7"). The relative
ordering of the terms in the I" and A equations are
l:l:l?e/w :1:0:¢,

11010, /e, 2, /o, e 1:1:[1:0:1: 1 e]:[1:0:1:1:¢€]. (49)
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Terms ordered as O vanish in the homogeneous limit, and are otherwise small in the
Debye length over the inhomogeneity scale length. The appropriate ordering of
the T, consistent with (49) and the initial conditions (45) is I, = O(&*). Note that the
order of T}, is one higher than the corresponding f,, because knowledge of the initial
condition on one particle makes an O(¢) perturbation to the background. Using this
ordering in the plasma parameter & we can truncate the hierarchy of equations for
the f, and T, by working to any desired (fixed) order in . Rostoker worked to order
e. After rederiving Rostoker’s lowest-order results, we will work to order &%, where
the basic equations of the theory are (41) and (43) and the following:

’

9 +—e-’—vXBo'—a—+ v’XBO'—a~)g(X,X’,t)

e
.
ax’ mgc dv  m,c av

| e -4 (G

"ox |x—x'{\m, do m, IV

r r

2 + v°—(2- + v
at dx

o€ 8 1 9 .y
+§nr”er"fdx (mr ax lx_xul av[f(X’t)g(X’X ’t)

(X", 0 g(X, X, )]+ (X o X)), (50)

d ad , 0 e, d e, A . ,
(-(9—t+v PP ax’+m,c”XB° av+m,,c"XB° av,)A(Xo,to,X,X,t)

_,, 01 (148 1 9
= ek x—x| \m, dv m, 3

r

.[I‘I(XO’tO; X’t)f(x" t)+T1(XO’t0; X” t)f(X’t)]

4 ef _2_ l __i . ’ 7t
+§m,.,e,"de (m AP A%, DA (Ko, 103 X', X7, 2)

+ (X7, 0)A( Xy, to; X, X, )+ T( Xy, 10; X', 1)8( X, X', 1)

+ (X, to; X, 1)8(X, X”,t)]+(X<—»X’)), (51)

together with the initial conditions (47).

It is useful to note as a formal device, that to obtain the equations forI, A, and ¢,
ete. from the more familiar equations for f, g, and 4 etc., one may formally replace f
byf+I,gbyg+A, hbyh+ein the equations for f, g, and 4, regard I', 4, and ¢ as
small perturbations, and collect the terms that are first-order in these small quanti-
ties. One then obtains precisely the equations for I', 4, and e.

1t is worth pointing out that our approach to the theory of fluctuations through
the two-time hierarchy, as opposed to a phenomenological or a thermodynamic
approach, at least starts with exact equations, and even though approximations are
necessary to solve them, error estimates are at least in principle obtainable.
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The I hierarchy in the Klimontovich formalism

The regular hierarchy functions ma i
: : y be defined as expectation values of
of the Klimontovich phase space density function N,(X, 1), defined by o products

A
N(X,0)=— ¥ 8[x- x/(1)],

ri=1]

(52)

where X7(¢) is the exact traj i i
. f yectory of the ith particle of 1 e i
Just the expectation value of N,( X, t), that is P of the rth species ff(X. 1) i

(M(X,00)y = [4Y DY, )N, = f7(X,1) (53

If a subtraction operator S is defined, which, when acting on any product of N.’s

removes all terms containing products of d i .
different points, for exampleg P of delta functions of the same particle at
SN,(X, 1) R
r X9t IV,'(X’,[ =— Sl X—xr " ,
) n?; Tl [ X"(t)]a[X_Xj(t)], r=r’
i=j

N, N,
¥ olx-xs[x-x0], rer

1
n.n,
et =

then it may readily be shown that

(SN (X0, N, (X, ) N(X,, 1)y = f1 (X, X, -+ X, 1). (55)
From the equation of motion for N(X,t)

J Ja e 9
0=|— —— T
(3t+v ax+erUXB0.av)Iv’(X’t)

€, d 1 a
n,, - dX'—-———-—o_._ ’
mrg ¢ f 8x |x—x’| 3US1V”(X’I)NH(X’[) (56)

proved by noting that

ad ax/(t) 2
=0 X— X/ (t)]=- "L~ — - X/
78X - X/(1)] 5 ax0 X~ X/(1)] (57)
r:y thl;aet tl;e sutzltrat(l:]tion g}}:’erator arises from the lack of electrostatic self forces, it
rove. at (X1, )N, (X5, t)--- N.(X,, t) satisfies :

1 . - (X0, DN, , (X, the BBG
h.1erarchy. On ‘takmg expectations with D\(Y, t) this provides an alternative deriljz:{
;:/on of the hierarchy f(_)r f,- It is clear that N, (X5, 1)SN, (X,, )N, (X,, )~ - -
N,’())(},t) must also sa'tlsfy the BBGKY hierarchy [in the lvariables’2( X2 ’t)] as

,.( Xo, £3) commutes with all the differential and integral operators. The san’1e n’must
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be true of its expectation taken with D,(Y;, , Y, t). Finally, the quantity
(N, (X, t,)SN, (X, N, (X3, 1) N, (X, 1))/(N, (Xo,10))
—<SNr,(X1’I)Nr2(X2’t).'.Nr,(Xs’t)> (58)

must also satisfy the same hierarchy, but a straightforward calculation shows this
quantity to be none other than

Iy Xo, to; Xy X, 1) (59)

An alternative approach for deriving the formalism of Section 2.3.2 would have
been to have defined I, by the expression (58), on the grounds that it transparently
satisfies the BBGKY hierarchy, but this was rejected in favor of the development in
terms of the more familiar Rostoker functions which shows their probabilistic
interpretation.

2.3.3. Fluctuations in uniform plasma

Introduction

In this section the spectrum of fluctuations of a uniform plasma will be found in
various approximations, where frequencies are of the order of the plasma frequency
w 2 w,, Or, more properly, well above collision frequencies. Wavelengths will be
considered where the collisional damping is dominant over the Landau damping, as
well as those where Landau damping dominates. The case of low-frequency and
hydrodynamic fluctuations will be treated in Sections 2.3.4 and 2.3.5.

The electron charge density fluctuation spectrum is important experimentally, as it
determines the incoherent scatter of an electromagnetic wave from a plasma. The
incoherent differential scattering cross section through wavevector k with frequency
w is proportional to the spectral intensity of electron charge density fluctuations of
wavevector (K — k) and frequency (£2 — w) where K and & are the wavevector and
frequency of the incident wave. The explanation of the ionospheric incoherent radar
backscatter experiments of Bowles (1958) was a major success of plasma kinetic
theory, and at the time it was one of the few meeting points of theory and
experiment.

Lowest-order theory of fluctuations of a stable uniform plasma

The results of this section have previously been obtained by Rostoker (1961). Its
purpose is to establish the connection between the formalisms. First conventions are
established for Fourier and Laplace transforms, and the spectral intensity of a
fluctuating quantity is defined.

For any function of position f(x), its Fourier transform f(k) is defined by:

7k =[x fle)ets (60)
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with inversion:

d’k —ikex
/(=)= e (61)

) For any function of time f(¢) its one-sided Fourier (Laplace) transform is defined
y:

fle)=[ “f()edr (62)

with inversion:
1 * —-iw
fO =5 [ f(w)edu (63)

with the contour rgnning z}bove all the singularities of f(w) in the complex w plane.
Supposing y(¢) is a stationary random process, its autocorrelation is defined by:

C()={y(10) y(to + 1)). (64)

The average is an ensemble average. One of the theses of equilibrium statistical

mechanics is thfa ergodic hypothesis, which would equate this to the time average over
to. Its spectral intensity is defined by:

S(w) = /_”wc(f)eiwdT (65)
so that
o dw .
C(r)= f_wi;S(w)e i, (66)

Since Laplace transforms will be involved S(w) wi
" ill be related
transforms of the autocorrelation. Define ) reiaied 1o Laplace

5*(w) =]:°ei“”C('r)d1- (67)
and
5 (@) =./j)°°eimC(T)dT= [$* (w)]* (68)

since C(t) = C(~t) by time reversal invariance. Hence
S(w)=S+(w)-hS‘(w)=2ReS+(w) (69)
if y(¢) is a real process.
One may.obtain a v_ariety of dispersion relations utilizing, for instance, the fact
that S*(w) is analytic in the upper half plane, which implies ’
/°° St (w)dw’ -0

ce W —w+ie ’ e>0 (70)
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and hence that
+ ’ ’
lP/——————S (,“)d“’ =iS*(w) (1)
m W —w
using the Plemelj formula:
! — =P ,1 Find(w' —w). (72)
w —wtie w—w
Taking real and imaginary parts, one obtains Kramers—Kronig [see e.g. Landau and
Lifshitz (1969)] type relations:

1 ImS™* (w)dw’ (13)
ReS*(w)=;Pf'—“‘_w,_w

1 ReS* (w)dw 4

ImS*(w)=—;Pf——————w,_w . (74)

The power spectrum and the Laplace transform of the corrc?lation fqnction can
thus be constructed from one another and so contain the same mformathn. .

The spectral intensity and autocorrelation functions may be ggnerahzed, in a
uniform background, to include spatial as well as temporal fluctuations:

Clp, 1) =(y(xp,10) y(x0+p 1o+ 7)) (75)
S(k,w) = @[ drerthac(p,n) (76)
| 4 — 00
and to cross-correlations:
Cij(P"T):()’i(ono)yj(xo+P’to+7)> (77)
Syl w)= [ &of " dreterritec,(p, ). (78)
In this case time reversal invariance takes the form:
Cij(Pa'r):iCji(P’_'r) (79)
S, (k,0) = £ 8} (k, ). (80)

The plus sign arises when the quantities y; and y; have the'same “parity” under time
reversal, the minus sign when they have opposite “ panty”.. Onsgger _(1931) used
arguments based on these time reversal properties to deduce his reciprocity theorem,
one of the milestones in the theory of irreversible processes. Under time reversa.l,
magnetic fields reverse direction. The Onsager theorem thus relates transport coeffi-
cients in opposite magnetic fields. . S
The charge density fluctuation spectrum will now be derived. For sm}phcny, it
will be assumed that there is no external magnetic field. The results obtameq for a
plasma in a uniform external magnetic field are stated without proof later in this
ction. ' ‘
* The lowest-order theory is obtaired by neglecting the A term, wh%ch is O(az)., in
(43), and noting that the electric field of the background plasma vanishes when it is
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spatially uniform. Equation (43) then reads:

d d . e, df
(8t+v ax)Fl(X,to,X,t) m 3o

, d 1 N
zr;n,,e,,fdx axm,—lrl(Xo,to,X,t)—O (81)
with initial condition given by
. 1
r(Xx ,to;X,IO)'=g(X0,X,IO)/f(XO,tO)+n—-8,,06(X—XO),
7o

which is O(e). It should be emphasized again that this evolution equation for I is
just the linearized Vlasov equation with given initial condition, if g is known. Since
the background plasma evolves on a timescale much longer than a fluctuation
period, since df/dt = O(e), I', may be regarded as a function of a fast variable ¢ — to

and a slow variable ¢,. Laplace transform will be carried out with respect to the fast
variable, defining

co | .
I'(vg; 0, k,w) =f elel=ro)dt fde e* I (X, 105 X, ). (82)
0
The power spectrum of charge density fluctuations is then given by:
<pp>k.w=2Re<pp>l-:—,w (83)
(ppdiu=Ln e, Kne, [ doyf(v) [ oI (ey; 0, k,0), (84)

using (27) and (69). (The p here should not be confused with the spatial variable p
introduced earlier.)

The power spectrum retains a slow dependence on ty, reflecting an adiabatic
variation of the fluctuation spectrum with the changing of the background distribu-
tion function f. This can be formalized by the method of multiple timescales,
introduced to plasma kinetic theory by Frieman (1963) and Sandri (1963). The
validity of the approach requires a clear separation of the timescales of the
fluctuations and of the changing background, and so will break down, for instance,
whenever the decay time of the fluctuations approaches the collision time.

Fourier transforming (81) gives:

e Ank df

(w+k-v+ie) (vy; 0k, w)— m 270

Zn,,er,/d3v’1'(vo; v, k,w)

RV ©

¢ is a small positive constant (not the plasma parameter!), taken to zero at the end of
the calculation, which provides the correct analytic continuation of T’ | for real w.
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Dividing (85) through by w + k - v +1i¢, integrating over v and summing over species
gives:

anerfdgl).r(vo; ‘D,k,O))

e, e, f d’v go (05, 0, k) ) (86)

i

=s(k,w) w+k'vo+is+ f(v,) w+k-v+ie
e(k, w), the plasma dielectric function, is defined by:
ne? Ank 3 af/dv
ek, 0)=1- Lo =5 fa T (87)
Multiplying (86) by f(1,), integrating over v, and summing over species gives:
<pp>;-,w = Z nroeronrer/ d300f(00)fd301—‘|(vo; v, k, 0)) (88)
o, "
S S A )
ek, w) zr:n,e,(e,fd Yotk-vtie
1
3 3
+/d s %nroe,ofd vogo(vo,v,k)). (89)

From this point onward the calculation parallels that of Rostoker (1961). To
obtain an explicit result for {pp){ .., §o must be found in terms of . This is possible,
because g changes on the plasma timescale and f changes on the much longer
collisional timescale, and thus g is able to follow f “adiabatically”. It must be
pointed out that the time ¢, is in general not the preparation time of the system, .
In general ¢, = — o0 i3 taken so that any abnormal correlations have died away. The
appropriate g is thus the asymptotic long-time solution of (50). In the context of
kinetic theory, this separation of timescales is known as the Bogoliubov (1962)
ansatz, and the kinetic equation obtained by substituting the asymptotic g, as a
functional of the slowly varying f( X, ¢,) into (50) for df/dt yields the well-known
Balescu—Guernsey—Lenard (BGL) equation (109) (Balescu, 1960; Guernsey, 1960,
Lenard, 1960). At this point, a critical discussion of the Bogoliubov ansatz would
lead us too far astray. Suffice it to say that it breaks down for sufficiently small k
(compared with the Debye length), where Landau damping is too weak to damp out
the initial correlations sufficiently rapidly, as is required if g is to be validly replaced
by its asymptotic long-time limit.

The function g therefore satisfies the following equation, obtained from (50) by
dropping the term in A, which is of higher order (it is assumed) in the plasma
parameter, and Fourier—Laplace transforming, treating f as constant in time:

(ie+ k*(v'—v))g(v, v, k)
k

r af’ , -
~ dmee, X | LA pr(o) (k) = o S [ () + ()] .

k
(90)
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Note that g is known once 4 is known, where h(k, v) is defined by

e,uh"’(k,vo)EZn,e,fd%g(vo,v,k). (91)
By symmetry under particle interchange
e h” = Zn,oe,ufd%g(vg,v,k). (92)
o
Make the following convenient definition:
k [(v)
Ulk,w)=— 2l 43
( ) w;n’e’fde+k'v+ie (93)
and note that the imaginary part of U is given by
ImU(k,w) =~ 2 dofr © kv
(ko)== et f o/ (0)8(F+ 5 ) (94)
and that
2
Ime(k,0)=Z Y anfe k(43,9 (@ ko
(k,w) k;wmrszdoavak+k . (95)

Dividing (90) by [k+(v'~ v)+ie], summing over species and integrating gives:
h'(v, k)e(k, —k-v) = (1—e(k, — kv))f"(v)
47 k 5f’(7r (kv
—— = - U(k,— k-v)+ | & . %_.__’_IL
m, k2 do\k ) f ;‘n’e' k(v —v+ie) |’
(96)
Make a further definition:

H(u,k)=Zn,ef/d%h’(v,k)S(u—k'v/k).

[Note again that & (hence g) is known once H is known since the right-hand side of

(96) depensls only on H.] Then, by multiplying (96) by 8(w + k-v), integrating over v
and summing over species:

H(-w/k,k)e(k,w)=—[1—e(k,w)]ImU(k, w)

k T * ’
~—-Im£(k,w)(-——U k,w)+ 2 3'_}1_(111"_).._
7 -k (k, ) ;nre'-[de+k-v’+ie )
(97)
Noting that (89) for (pp); , may be written in terms of U and h wi i
oy %, of U and h with the aid of (92)

i

003w = i U 0)+ e [ ater L)
*. e(k,w) |k (k@) ;n'e'fde+k~v’+i£ ’ (98)
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(97) may then be used to express it in terms of H as:
i w
+ im ( 1 ——1)ImU(k,w)~H(——,k)]. (99)
(PP, klme(k,w)[ (ko) k
The spectral intensity is obtained by taking twice the real part of the Laplace
transform:

27 ImU(k,w) ImH(—w/k k) (100)
(PPYuw=T7 |~ + :

koo k le(k, w))? Ime(k,w)
However, as Lenard (1960) first showed, the imaginary part o.f H .van.ishcs'. This can
be seen from the following rewrite of (97) for H(u), by taking its imaginary part
using the Plemelj formula (72):

’ T , 2, v .
Hw) = [ 7= [24 e S+ (W)

7 __ —1 2
u u—1e r, m,,k

dwne? 9F"
m k* du

-z

H real does indeed satisfy the above equation and the solution is unique. F’(u) has
been defined by

();n,,ef,F"(u')+ H*(u’))}. (101)

F’(u)Efd%f’(v)b‘(u—k-v/k). (102)
One finally obtains that
27 ImU(k,w) _ 27 ImUlm(l/e) (103)
<pp>k,w_ k le(k,w)|2 k ImE

which is a trivial generalization of the result of Rostoker (1961) to a multispec.;:les
plasma. Note that the fluctuations grow very large as a mode moves toward marginal

tability, but then this theory tends to be inadequate. . S ‘
i In t}?ermal equilibrium the special form of the Maxwellian distribution function

enables ¢ and U to be related:
K? 47’

- (104)
E(k,w)=l+7(—2— P Ulk,w),
where, as always,
Kzs%’l);n,ef (105)
is the square of the Debye wavenumber. Hence:
_ T3
ImU= Tk Ime (106)
4720
and
LSS (107)

<pp>k.w == 2w Im E(k, w) B
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Upon use of Poisson’s equation relating electric field to charge density,
(1787 )CE(x, ) E(x9, 10) )k, = =~ TIm(1 fwe(k, w)) kk, (108)

which is the result given by applying the fluctuation-dissipation theorem (Callen and
Welton, 1951; Callen and Greene, 1952; Kubo, 1957) to the Vlasov plasma [see, e.g.,
Sitenko (1967)]. [If (103) is compared with (107) and (94) and (95) are used, a
fluctuation temperature Ty, can be defined by:

ZnezfduF(u)S(u+w/k)

_ 472 ImU _

w
Ta k3 Ime k

Z(nez/n1)]du(3F/3u)6(u+ w/k) ,

which shows the competition between Cerenkov emission and Landau damping as
determining the spectral intensity. In certain situations, such as due to photo-ioniza-
tion in the ionosphere, where these are long drawn-out tails in the distribution
function, this can be quite high compared with the particle temperature. Of course,
in thermal equilibrium they are equal.]

Balescu - Guernsey - Lenard equation

So far obtaining the kinetic equation for f( X, ¢) has been side-stepped, but all the

ingredients for doing so are at hand. From (40), for spatially homogeneous plasma
and no external magnetic field,

af’ e, ’ 4 1 d re’ ’
%—(v,t)=;—2;nr,e,,fdz\’-a;m-avg (X, Xx',1), (109)
or
afr_ _a e
o = "0 (110)
where
- 2
J=— (2‘)3 ;—'fd3kk¢(k)h’(k,v). (111)
T r

Here ¢(k)=4=n/k?, is the Fourier transform of the Coulomb potential 1/]x — x'),
and h’(k, v) is defined by (91). Since ¢(k) is real and the whole r.h.s. of (109) must
be real, only the imaginary part of 4 need be found.

Unfortunately the method of Lenard (1960), who side-stepped solving the integral
equation to find Im 4, fails in the multi-species case and (96) must be solved by first
solving for H from (101). Some notational simplifications will be made. Define

_ « dane? 9F
x(u)=3 k2 o’
and

¥ (u)=Yne’F(u). (113)

(112)
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Species labels have been omitted in the sums. Then (101) may be rewritten as:

H(u) = [ (u)+ B)] [ 5 x(w)
—x () [ 2 [y () + H()), (114)
remembering H is real.
This is further simplified, writing

K(u) =+ (u)+K(u) [ d“’;(jw (u) [ du u—lf%fw (115)
where

K(u)=H+y, (116)
Define

o farE, - far A

B(z)Efdu—i—f—-(-_u—z,

Now the functions A(z) and B(z) are analytic everywhere in the complex z plane
except along the real axis where they have jumps 27iK(u) and 27ix(u), respec-
tively. (These functions K and x are real functions!)

Now rewrite (114) as

1 + - — 1 + 4= -__1__ +_ p- -
S (A% ()= A7 ()] = () g (A = A7) B = 5 (B = 57) 4

B*(u)= /du _x(w)

w—uFie’

or
Vorgs - - +

— —B)-A~(1-B")]=

[ A* (1= B )— 4~ (1= BY)] =¥ (w)
If this equation is divided by (1— B~ )1— B*),

At A” ) B 27y (u)

< 1-B* 1-P" (1-B*)1-B7)"
Notice (1— B™) is just the plasma dispersion function e(k, —iku) and for stable
plasmas has no zeros in the lower-half z plane. Likewise (1— B")=(1— B7)* hasno
zeros in the opposite half-plane: the denominators do not vanish. A generalization of
Cauchy’s Theorem is now used to write the solution,

A(2) [ () Nk, — k)
l—B(z)—-[du u—z : (117)
Hence
A(Z)— B(Z)]fd ¥ (u )/I:(l_‘z" ku )l (118)

It can be seen from (96) what is needed for solving for £ is just A~. Hence

A‘=e(k,—k~v)fdu'M. (119)

u' —u+ie
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Now the equation for 4" may be rewritten as

R (v)e(k, — ko) = f7(v)(1— ) - —— 4m 3f (v)

m ————=A"(u). (120)

Using the result for 4,

h’(v)=f(’)(v) (1—;5) _ 477 af (v)/d ,‘I’(ul)u/’li(l’;;‘ieku,)lz. (121)
Upon taking the imaginary part,
, Ime 4772 af"(v) 2ne’F
(o) = (o) T SR S
B wf’(v) 5 4ane? aF(u) 7? 8f (v) ) ne’F( u) (122)

lef? m  Ju kz J¢]?

Thus the expression for J” may be written down:
2
r —__—n_r 3, 3
J(v) 2m,fdvfdk

kk=[(1/m,)(3f/30) Ene*f(v)) = f7(0) ¥ (ne*/m)(3f(v) /0]
k*le(k, — k-v)?
X 8(k-v—k-o), (123)

where the terms in the sums ¥ are over all species.

These kinetic equations [following Lenard (1960)] may be shown io retain their
positivity if initially positive, to yield particle conservation, and, when summed over
species, to be momentum and energy conserving. Further the Maxwellian distribu-
tion is a stationary solution and an H-theorem may be demonstrated.

Inclusion of uniform magnetic field

In other parts of this section the important effects of a uniform magnetic field
have not been included. To show how to include the effects of such a field the
dispersion relation for electrostatic oscillations will be derived using a technique due
to Rostoker (1961). To include the field in equations for correlation functions, etc.,
see the paper of Oberman and Shure (1963), for example.

Consider perturbations f,(x, v, t), E(x,1)=— v¢ about an equilibrium
folv,,vy), 3fy /3¢ =0, where v is given by

v= (v, cosd, v, sing,v ) =e, v, +ev,

in cylindrical coordinates in velocity space, with v, = v- B/B.
For perturbations of the species s of the form

[ eihrxrion v =Imw < 0 for instability,
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then since
d d +e¢ a _ﬁ_
90 %30, v, 6¢ “au"’
g e (A, s s
(+1w+1k°v)fl—ﬂsa¢—-m—sxp(k e 5= +k“80“ (124)
or
; afs
(+iw+ikyo)fi +ik, v, cos(d —a)fi = 275
ie, 8/0 s (125)
= 7n—sxp(kLcos(¢ ) + k“Bv"

Here 2,=e,B/mc and k = (k, cos, k,sina, k).
Now let any function A(k, v) have the expansion

A(k,v) = explik, a;sin(¢ — a)]

x % J,(ka)expl—in(¢—a)]4,(k,v, . 0,) (126)
with the inversior: o
A, (ko ,0)) = 27,](1,( 3
xfo "doA(k, v)exp| —ik, a,sin(¢ — «)]explin(¢ — a)].
(127)

Here a, = v, /£, and the J, are ordinary Bessel functions of the first kind. Repeated
s L s T Un
use is made of the identity

S I,k a,)explin(e — o). (128)

[Note if dA(k, v)/d¢ =0 then it follows at once that A(k,v)= A, (k,v,,vy).] Now
multiply (125) by

exp[ik, asin(¢ —a)] =

s explik, a,sin(¢ — o)Jexp[(in(¢ ~ )]

e n

and integrate over ¢. There results
(+iw+ik“vu)f,f(k v, ,0)

— g [ 40 (exp -k, a,sin(e - @) Desplin(o )]

Zw.lf "d¢ exp[ ik, a sm(¢~a)] exp[ln ¢ —a)]

ie

mg

9fs

dv,

8f + k, cos(¢ — a)

[-ik, asin(¢— a)]e* ‘8
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It follows readily upon integration by parts that

. . . _ e afy (o + ) afs
(+xw+1k”v”+mﬂs) = \p( 35 "+ 7, ——-———2 7o,

( afo n afos)

t 80“ a, do,

———

where the identity
‘In+l(z)+‘]n~ l(z) = (2"/2).]"(2)
has been used. Therefore,

e, Kkydfs/dvy+(n/a,)ofs/dv,
mg 4 ko, +nf +w ’

-f;' =
Now from (126) and (127) it follows that
o0
fd3vA(k, v) =fd3u T

n=—0o0

Hence

\P——Zeffd3

2 " .
- “s 3 12 kydfs/dvy+(n/a,)dfs/dv,
"\I/ZZ k2 fdv‘]n (k.La.r) k"U"'*‘an‘*'w .

Hence

o k,8f3/ v, +(n/a,)afs/ dv,
(1—22‘2‘; o/ e ) o

k“v” +nl +w

[vr2(k, a,)

=e(k,w)x[/=0 (129)

yields the dispersion relation. For stable plasmas the analytic contuation for Imw > 0
is effected by deforming the v integration from the real line into the Landau
contour, just as in the absence of magnetic field.

The equations for the spectral intensity found earlier in this section may be readily
obtained using this technique. e(k, w) and U(k, ) are just replaced by

- “ o (ka )[k-3f/3v],
a(k,w)—l-zs:szdw}: ot (ko). 11s

k w) —Ene fd%f(v)ET(k—v)*Ti*e—. (130)
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and
(kev),=k,v,+nQ,,

O oy 9L n3f
(k 3v)n_kzauz+a dv”

Scattering from density fluctuations

From the Lienard-Wiechert potentials [See e.g. Jackson (1962)] expressions may
be obtained for the electromagnetic fields at a point r due to a moving charge at

p(1):
E(r,t)= e(

B=NXE,
where B=uv/c, g=(1-N+B), R=|r—p(t), and N is a unit vector along R. The
subscript ¢ means all quantities are to be evaluated at the time ¢’ =r — R(t")/c. In
the wave-zone the second term in (131) dominates and in the nonrelativistic limit
this becomes

E(r,t)=(e/Rc®)[N X(N x )], (132)

Envisage a large volume of plasma, on the average spatially uniform, illuminated by
a plane wave Ecos(K - x — £¢). This induces an acceleration to each charge given by

o, = (e/m)Egcos(K-p,(t)—2t),

(1=2)(N-B) N x[(N-B)xB]
gSRZ gJCR

, (131)

¢

in the first Born approximation (i.e, it is assumed that the plasma is optically thin).
Summing the contribution from all particles and neglecting the contribution from
the ions, which is down by the mass ratio, gives:

_ et WL =1+ = p(2)|/c]
E(r,t)= — fd3pfdt b = (0]

X N(t")X[N(t")X Ey]cos[ K+p(t")— 2t'] Za[p -p;(11)]. (133)
J
At large distances from the plasma (|r| > |p]), representing the §-function in w-space,

E(r,t)=- %[E0 — NN-Ey]Re exp[—iw(r — R /¢)]

Xf%fd%fdt’exp{i[(w - Q)t’+(K— %N)-p]} Y8(p—p,(1)).

(134)

Here r; is the classical electron radius e?/mc? The quantity of interest is the
expectation value

, 1
lim = [diE?)

dow

2
= (8@ N0 2] _ain2 204 — _w -
= [ 3N GIE P [1-sin'acos®(¢ ¢0)]S(K “N.o sz) (135)
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Here a is the angle between NV and K, and ¢ and ¢, are azimuthal angles locating N
and E, in a plane perpendicular to K respectively. If the incident wave is unpolarized
the factor cos?(¢ — ¢,) — 1/2. The quantity

Sth,w) = lim 2z [ @)/n)] (136)

is the spectral power density of electron density fluctuations. Hence, the time-aver-
aged mean energy scattered per unit time per unit solid angle 2, per unit Aw/27 (a
band pass filter is placed at r permitting only frequencies in the interval Aw)

d

GraRaa an = VSl @) (1= sinasin® (¢ - ¢)]. (137)

The quantity S may be computed using (27) and (82), and parallels exactly the
calculation for the spectral intensity for charge density fluctuations given earlier.
Only the results will be quoted:

il;S(k,w)=l—(—l%el):i—)lz‘/d%fe(v)b‘(w+k-u)+%fd3vfi(v)8(w+k-v).
(138)

Here the x’s are defined through
e(k,0) =1+ x.(k, 0)+x;(k,0). (139)

A detailed discussion of these results for different situations, as well as references,
are given in the paper by Rosenbluth and Rostoker (1962). [See also Bekefi ( 1966).]
Only a few properties will be quoted:

(a) The scattering is only from electrons, i.e. from electrons in the polarization
cloud of moving ions and from the core and the electronic part of the cloud of
moving electrons.

(b) If w~ 2 then the scattering is from particles near zero velocity. Since the
equation for the spectral intensity depends only on F,(u=0)=(1/2%)"/2/v, [see
(102)] and F(u=0)=(1/2m)"*/vy;, and for approximately equal temperature
U < 0p, the plot of the scattering cross section against (w — £2) should have
Doppler broadening Aw ~ kvq;, and indeed this has been observed for kAp| <1
[see Evans and Loewenthal (1964)).

(c) When (w — §2) ~ w_, there should be a sharp resonance, for |kA,| small, and
indeed this has been seen in the Arecibo radar backscattering experiments (Perkins
et al,, 1965). This occurs, of course, because of the resonance at w ~ Wpe in e(k, w).

(d) If T, > T, |kAy| <1, then acoustic waves become resonances of e(k, w) and
“horns” should be observed at the acoustic frequency.

(e) If |kAp| > 1, the plasma cannot support collective behavior (except at nearly
backscatter) and then

S(k,w)zzw/d3u,g(v)a(w+k-o), (140)

i.e. just the formula for scattering from unscreened electrons and indeed the electron
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- distribution can be probed (using lasers), and if Maxwellian, the temperature
determined.

(f) In thermal equilibrium the scattering cross section integrated over all frequen-
cies can be computed to yield

_ 1+(k>‘Dc)2 _ <% kA pe| < 1

2 (141)
2+ (kApe) 1 JkAp)>1.

dw
—ZTT'S(k,w)

The plasma polarization effects for |kA | small have reduced the usual Thomson
scattering cross section by 1/2.

Enhanced induced emission — Rostoker superposition principle

A quite general calculation will be presented here for the induced emission of
high-frequency waves in plasma when the amplitude of the incident wave is just
subcritical for the inducement of parametric instabilities. This enhanced emission,
which can be well above the thermal level in the absence of the incident wave, has
been observed in ionospheric and laboratory (and computer) experiments. (Actually,
the enhanced emission persists post critical, but the intensity of excited waves is then
determined primarily by the competition between instability and nonlinear satura-
tion [see e.g. Valeo et al. (1972)]. The calculation begins with the unified formalism
of Drake et al. (1974) for treating parametric interactions, and then invokes the
superposition principle of Rostoker (1964) [see also Krommes (1976)] of dressed
then uncorrelated particles for introducing particle discreteness.

Consider a large amplitude plane-polarized electromagnetic wave

E =2eyEcos(K+x—9t)

EE0+exp[i(K-x—9t)]+E0_exp[—i(K-x—Qt)] (142)
propagating in a spatially homogeneous plasma. [The notation of Drake et al. will be
used for purposes of symmetry. Note that the Fourier transform convention is
different from that previously employed. (The factor 2 in (142) spares propagating
through the calculation a factor of 1/2)]. The coupling of the pump to electron
fluctuations &n,(k,w) arising from the discrete charged particles and their clouds
lead to sidebands at k, =kt /K, 0, =0t IR2. Since situations are considered
where eE, /mQc <1, only the first side bands atk , =k + K, 0w Sk £ will be of
concern.

The Fourier transform of the wave equation for the side band E , (k,,w ) may
be written

[(kzi—wzi/cz)l—kiki]-Ei=(4-niwi/c2)Ji. (143)

Here / is the unit dyadic. The current density consists of the sum of two parts, the
usual linear response given by o, +E ., and the part

-2
ie
81i=i;§8ne(k,w)lz‘oi, (144)

produced by the beating of the high-frequency oscillation velocity induced by the
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pump and the low-frequency electrostatic density fluctuation. In what follows
2/w,>1(or if 2/w, ~ 1, then kAp < 1) and 0/ <1 are taken.
Equation (143) is now written as:

. A ) dmioy\ . 4
{[(k;cz—wzi)—4mow](l—kiki)—w (1+—;—)kiki E,
on (k,w)
= —2———E . (145)

ny

Here, k = k /|k|. '
For isotropic velocity distributions,

°+=°;¢("'l;i’2i)+°nikiki’ (146)
with

o, L= wg fdu FO(u). s

L+ 4aik, u—-w, /k,—v/k,

and

w? dF, a
o =———.P——fdu “ O(M)/.u )
I+ drik | u—w, /k,—iv/k,

and
Fy(u)= fd3uf0(v)8(u - ’21'”)

has been defined earlier.
Write (145) as

8
B (kyw0)Eq s (147)

(Di(I_Eiéi)—wzisilzik‘i).Ei:—wge 1o

with D, and &, well approximated for high frequencies by
Diﬁkzic2+w§-—wzi—iwf,v/wi, (148)
and
e, =1—(wd/w? )(143k% o)+ (162 /wh ) /0 & (149)

Here » is the electron—ion collision frequency [or possibly Lanfiau damping in (149),
depending upon the size of k , Apl Equation (147) is readily inverted to yield

_ pen(kw) (1-k k) kik.)\p
+= "% o 0+

Dy whey
The next task is to compute dn (k,w). It is computed from the set of equations:

bn,(k,w) = 2 (k, w)ik-(E(k,w)+ i—elixp(k,w))+se(k,w), (150)

ani(k,w)=—ZL(}‘;e—Qik-E(k,w)+si(k,w), (151)
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and
ik*E(k,w)=4me(8n;,—8n,). (152)

These equations represent the collective (Vlasov) response of the plasma, in the
presence of the pump, to the bare fluctuating microdensity. That is, e.g.,

;)3 Zexp(-—ik'xm)ﬁ(w—k-v,), (153)

S;(k,w)= G

is the Fourier transform of
S(x,t) =Y. 8(x—xp—vt), (154)
i

the bare ion microdensity. A similar equation holds for the electron S,. The x’s are
the linear Vlasov susceptibilities. The ponderomotive potential which represents the
influence of the pump, enters in the electron Vlasov response as a force on the
electrons

F,=— vy,
with
e2 E,, E, E_|\"
\pw=$n—<(Re 0 +TJ:—:+K )>
=(e?/m2*)(E,,E_+E,_*E,). (155)

The brackets ()I represents the w frequency component remaining after a time
average over the fast timescale characterized by £2 > w. A corresponding term is not
retained in the ion equation because it would be smaller in the electrori—ion mass
ratio compared with the terms retained. The derivation of the equations, without the
sources, is discussed in Drake et al. There the fluctuations were somehow initially
imposed: if above threshold they would grow, if not, they would die away. Here the
subcritical situation sustained by the microscopic sources is considered.
Equations (150)-(152) may be solved for &n,:

1 k2
8n, (ko) Xe(k,@)S;+(1+x;)S, 47Tezxe(1+x,)) (156)

where e(k, w) =1+ x, + x; is the low-frequency dispersion relation. Equation (156)
may now be substituted into the equation for E , to obtain

wp 1 W
E,=~— 2 ———[x.(k,0)S(k,0)+(1+x;)S,]| 2+ - ——=% |-E,,,
+ "0 ENL(kvw) [XC( w) x( w) ( Xl) e] D wz—tej: 0+
(157)
where €y is the nonlinear dispersion relation
|’2+><'-’ol2 |’;—><U0|2 !,;4-.00'2 |k“—"’0|2
I3 =ek,w—k2°1+i + — -
N = &( ) Xe(1+x;) D, D e, e

(158)
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with v, = eE, /m§. The near vanishing of ey is the critical condition. The expecta-
tion (ensemble average) of the square of the electric field will now be computed:

<E2(x,t))=f/d3kdwd3k'dw'<5(k,w)-E*(k',w')>
xexp{i[(k — k') x —(w— w)t]).
Thus the expectation of
(S,{k,0)S3 (k' &)

< Yexp(—ik e xg;, + k' xg,,)8(w —k'u,-o)S(w’~k'vj‘,/)>,

iJj

@)
(159)

where o is a species label, must be computed. In accordance with the Rostoker
superposition principle, since the particles have been dressed they may be treated as
uncorrelated. Thus for any quantities
d’x,,
<aa(x10’vx)>=ff O‘ d3vifo(vi)ou(xio,vi)

and

<ao(xi0’vi)aa’(xj07 ",))

S [ S B g ()1 )y (e ),

1t quickly follows that

(8.0, )82 (K 0)) = 22050k = k)= ) 0, (0)8 =k -0)

(160)
If now (157) and (160) are inserted in the expression for (E%(x,1)),
n w2\ 1
EYx,0)y=—5|-= d3kdw{
( (x,1)) (2’/7)3(”0) [/ k—|5NL(k-,‘°-)|2
2 [ =)+ x (kw0 PR 2=
x ke (k0 PR (5= |+ xak PR
1 o @4 s f W4
! el P25 e 52|
k+|ENL(k+’w+)|2[ I k. k.,
kX Bof* 1k Byl ) (161)
ID(k,0)i*  w*le(k, @)
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‘ Equation (161) is the primary result of this subsection. The intensity in each of the
lines is obtained by integrating over each of the possible frequency resonances in
turn. Several comments are now in order.

The pump could have been electrostatic as well as electromagnetic; nowhere yet
has its electromagnetic property been utilized. Secondly, the formula can be utilized
for a sum of pumps as long as their phases are random; thus in a weak turbulence
theory the enhanced emission term in the kinetic wave equation can be computed for
one k mode due not only to the pump, but also due to the other parametrically
excited modes. Several simplifications occur depending upon whether the low-
frequency mode is an ion-type mode or an electron-type mode.

For w, >k, vy, the ion response x; and source F, may be neglected. For
w, Sk, vy the electron source F, may be neglected and X X; > 1 may be taken.
The formalism is not valid for scattering off electron modes for which kAp, <1, for
then the emission is due to longitudinal bremsstrahlung rather than Cerenkov
emission. However, by replacing the source F, by the appropriate quantity the
remainder of the calculation goes through [see Bekefi (1966)).

The special calculation for the electron-ion decay with T, ~ T; has been treated in
several places in the literature. This is the case of interest in many ionospheric
experiments [see Perkins et al. (1974)).

Of interest for laser experiments are also the Brillouin and Raman scattering.
Brillouin scattering with T, ~7; will be demonstrated here as a model of the
treatment of the resonance. The calculation parallels that of the previous reference.

Consider the case where D(k, w)= 0, whereas D(k =2k, 0—28), e(k,w), and
e(k — 2k, w —28) are nonresonant. For

w==wy= (w§+k2c2)|/2

’

iw?
eNL(k_,w_)D(k,w)Ee(k_,w_ )[29(0),——(»—'26‘;‘1'1\”_)], (162)
where 0 (1+x.)
— 2.4 A 2.8 Xc Xi
v = v+ k2 kX 6 wglm_—___s(k_,w_)' (163)

The real part of the nonlinear pump term gives a small frequency shift which is
neglected. -

If wg =@ <|K|T;/m;)"/* then only the term involving F(w_/k_)X|k X E,|?
contributes in (161).

Integrating over the electromagnetic resonance gives the following result for the
normalized electromagnetic field fluctuations intensity in the line around the inci-
dent frequency £2:

(B w0

Ik,w-ﬂ_
477'7;/(2']7‘)3
E? w, Qk. V. 12 2
= kX EgP 0 22 =D D_Ts(z) LY e ,
mnl, on\8/ v I+ T, /T [1+ Z(x)]

(164)
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where x = (wg — £)/V2kvy;. Here Z(x) is the plasma dispersion function. The
enhancement is identical to that of the electron-ion decay except for the factor
w, /2. The enhancement at other possible resonances can be computed in a similar
fashion.

Some remarks on inhomogencous plasma and higher order effect O(&?)
in homogeneous plasma

Kent and Taylor (1969) have used the superposition principle to describe fluctua-
tion levels in weakly inhomogencous plasma, of drift-type waves where convective
instability is present but the plasma is globally strongly stable. Baldwin and Callen
(1972) have also used this procedure to estimate transport due to loss-cone instabili-
ties (convective) in mirror-type fusion devices. Finally, Nevins and Chen (1980) have
calculated fluctuation levels and transport for the collisionless drift wave (which are
only weakly globally stable) including the contribution from the global normal
modes. This last paper discusses the limitations of these theories.

The O(e) theory is not adequate to discuss contributions to the spectral intensity
due to bremsstrahlung (longitudinal and transverse) and one must proceed to next
order in e. For thermal equilibrium, the fluctuation-dissipation theorem (108) may
be used to *‘save an order” in the calculation because the temperature T is formally
O(e). [Remember the plasma limit is e — 0, m — 0, e/m finite, ne finite, v finite.
Hence T=4imv% is O(e)]. In (108) the quantity (EE) is O(e) and e(k,w) is the
Vlasov dielectric function. To proceed to collisional order one needs e(k, w) to next
order (or equivalently the conductivity). This procedure has been utilized by Dawson
and Oberman (1962), Oberman et al. (1962), Dupree (1963), and Coste (1965), who
have calculated the collisional contribution to the conductivity for high-frequency
waves, and then related it to the emission. It will merely be pointed out here that the
solution of the equation for 4, and then I, in the high-frequency limit is no more
complicated than and essentially identical to the solution for the pair correlation
function required by the previous authors.

2.3.4. Kinetic equation for fluctuations on the kinetic scale

Motivation

This section is concerned with fluctuations with frequency of order &w, and
wavenumber of order ekp,, that is on the “kinetic” scale.

First recall the multiple-timescale derivation of the kinetic equation for the
particle distribution function f. Consider first a stable plasma with no spatial
gradients and in the absence of external fields. The one- and two-particle functions f
and g satisfy the equations (40) and (41) of Section 2.3.3, namely,
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o (x,1) _ et

,d 1 9 ,
vy — [dx g (X, X, 1), (165)

dx |x — x| L

a a a ’ nez af 24 a 1 ’ 7
(a:“’ 8x+v 8x’)g(X’X’t)__m—8—v /dX Elx—x’]g(x’x 1)

ne of o 9 ,
S L e L)
e 3 1 a d

a3 s, (166)

Instead of just making a straightforward perturbation expansion in powers of the
plasma parameter e, which would be invalid for sufficiently long times [of order
(1/ew,)] due to secularities, the multiple timescale technique (Frieman, 1963; Sandri,
1963) is used, where one replaces the time variable ¢ by a sequence of formally
independent time variables ¢, ¢, €%, ... and the additional freedom introduced is
utilized to remove the secularities alluded to earlier. The method is related to the
method of averaging of Bogoliubov (1962). f, g, / and 4 / 0t are thus expanded in the
following manner:

f=rO(¢, e, ezt...x,v)+£f(')(t, €t, ezt...x,v)+ e (167)
g=eg(¢s,et,%...x,0) +2gP( )+ - - - (168)
h=eh®( )4 ... (169)
3_a. 9,0

Friair e ek aezt+ - (170)

Then (165) to zeroth order in ¢ becomes:

af®sat=0.-
The function f is thus a constant on the plasma timescale. To first order (165) and
(166) become

Of0 U0 met i 8 13 iy b
a  det m Elx—xq% (X, X',1,et...) (171)

2
(% +L+ L=< a_iix_—l?(a% - %)f“’)(x, e ) fO(X er...),
(172)
where L is the Vlasov operator,
NERSE s SR
dx m Jdv dx Jx—x"|’
In order to ensure that /" is nonsecular in ¢ it is required that
©) 2
8;” = lim %— dx 557; E _1 Py -%y”(x, Xt et,.). (173)
¢t finite

Equation (172) may be solved for g obtaining two terms- one from the initial
conditions on g which for the most part decay to zero in strongly stable plasma on
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taking the long time limit, and a second term driven by the ff term (which physically
are the correlations created by collisions).

Substituting g{».  into (173) gives the kinetic equation for /. (109), describing its
evolution on the collisional timescale. The term arising from the initial correlations
can be related to the spectrum of fluctuations present in the plasma. [When the
plasma is unstable or only marginally stable this term can dominate and the above
procedure fails and one obtains instead the quasilinear equations of Drummond and
Pines (1962). Conversely, when the plasma is strongly stable the second term
dominates and one obtains the Balescu-Guernsey~Lenard (BGL) equations (110)
and (123), which were discussed earlier. Rogister and Oberman (1968, 1969) have
derived a comprehensive theory which covers the transition between the
Drummond-Pines and BGL theories at marginal stability within the context of
weak turbulence theory.]

There are two straightforward extensions of this theory that will be described
before the multiple timescale expansion of the fluctuation equations is tackled. The
first is the inclusion of spatial gradients and the second is the inclusion of external
fields.

The inclusion of spatial gradients in f is straightforward only if the scale of
variation is very much longer than a Debye length. This ensures that individual
collisions (which take place over distances of about a Debye length, of course) occur
in a locally uniform environment. Abandoning this condition would drastically
increase the complexity of the collision integral.

One accommodates such spatial gradients and the accompanying electrostatic
fields in the theory by using a multiple time- and space-scale expansion, and
demanding that the spatial variation in f occurs on the ex scale. Correspondingly, the
spatial variation in g is on the (x — x’) scale in the difference variable, but on the
&(x + x’) scale in the sum variable. So f and g are expanded as follows:

[=fOCet, ... ex, e%x...,0)+ef O(r, et... ex, ex...,0)+0(e)  (174)
g=eg(l)[t,et...,x—x’,s(x—x’)...,e(x+x’),£2(x+x’)...,v, v']+0(2).

(175)
Equations (171) and (172) then become
af®/3r=0
in zeroth order, and
Mm © ) ©
8{9t - aafet - aafsx B TZ—EO(ex, ) agv + de/B_i B“l_x'l'a_ig(l)’
: (176)

Equation (172) is unaffected by the new expansion, in lowest order. The effect of
inhomogeneity then is to change the left-hand side of (173) to a phase-space
derivative; the right-hand side remains unaffected. [Actually spatial inhomogeneity
scale need not be O(¢) for the argument to hold ]

The other extension of the theory is the inclusion of external fields, which appear
on the left-hand sides of both the f and g equations. To obtain the collision integral,
one must obtain g by solving (41) with external field terms included. This can be
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done by the method of integrating along trajectories. In practice one interesting case
is that of a uniform (or slowly varying) external magnetic field, which makes the
trajectories helices, and the g equation can then be solved by Fourier—Bessel
transforms. The point to be made is that the introduction of external fields produces
no new problems in principle, but somewhat complicates the results. There are two
caveats here. With the self-consistent electric field, the kinetic equation exhibits
high-frequency solutions which must be suppressed in order not to invalidate the
order in g. This is ameliorated, since kA, <1, by imposing the quasi-neutrality
condition Xe,n, (x,t)=0. The second point is that the presence of, albeit weak,
magnetic field gradients gives rise to drifts in velocity and trapping in magnetic wells
and these important effects must be incorporated into the expression v+ d/3x.
These are dealt with by appropriate gyro-averaging (and bounce averaging) to obtain
the so-called drift kinetic equation. This is handled in other articles in the series.
These details are omitted here so as not to obscure the heuristics of our argument.

It will now be seen that a similar analysis of the following equations for I'; and 4
lead to a kinetic equation for I'y. The additional complications arise from the
singular initial conditions on I’y and A as compared with the smooth initial
conditions on f and g.

Recall from (43) and (51) in Section 2.3.2 that I', and A satisfy the following
equations and initial conditions:

a ad e, )
(—+u- +m vX B+ 3 )F(XO,IO,Xt)

ot dx
e, df(X,1) , o, 1
___m_’—_*.-an,er,deF‘(Xo,to,X,l‘)-a—;l—rj},—[‘
e, , , 1
_78 F(XO,IO,XI) anE,/de(X [)ax——x—,l

€ , 9 1
= ;1-: gln,,e,,fd)( Ax Tx =

xll.%A(X wt(); X’ Xat)v

(177)

e, 9 )
- c"XBO_a;f)A(Xoy’o;X,X,I)
a 1 (1 a1 a)

B ”8x|x—x| m. v m, dv

[ (X, to; X, 1) f(x 1)+ Ty ( Xo, 105 X', 1) f( X, 1)]

+Zn e, de"( J !

m dxr—x| 3v[f1(Xt)A(Xo,fo,X’ X", 1)

+ (X DA Xy, t0; X, X 1)+ T Xgo 105 X7, 1) g( X, X1 1)

+ (X, 105 Xo 1) g( X', X7, z)]+(x<_> FOIN

(178)
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g(Xo, Xy, 10)
f(Xo. 1) My i
h( Xy, X, X', 1,)
f(Xo. 1)

[,O,B(X Xo)+38,,8(X"— )]. (180)

(X, 105 X, t9) = 8( X, ~ X,), (179)

A( Xy, te: X, X' ty) =

g(X. X' 1o) 1
f(Xo.t9) 7

The first point to notice is that (177) and (178) are exactly the equations that
would be obtained by a formal linearization f — f +I', g — g + 4, of (40) and (41)
for f and g as has been pointed out before. This implies that if I' and A were to
satisfy the same smoothness conditions (gradient scale lengths, etc.) as f and g, then
I, must satisfy the linearization of the equation satisfied by f.

1t will be shown that collisional diffusion acts to smooth the initial singularities in
I' and A sufficiently rapidly to justify the multiple scale derivation of a kinetic
equation for I'. All that is required is one simple key estimate. In a time ¢ a test
particle will diffuse into a probability ball of radius r given by r? ~ Dz, where

~ »X? is the diffusion constant. Now » ~ ew, (actually /[ ew, but the Coulomb
loganthm In will be disregarded for estimation purposes) and A, ~ Ap /e Hence,
r/Ap ~ €/%(w,1)'/? and so in a time long compared with a plasma period 1/¢,, but
short compared with a collision time 1/ew,, which we will henceforth call an
intermediate time, the probability ball will extend over a region much larger than a
Debye sphere. (This argument still holds in magnetized plasma only if the gyroradius
is much larger than the Debye length, which is assumed hereafter.)

It has thus been argued that I, satisfies the linearization of the kinetic equations
for f. For a stable plasma, which will be our major concern, this equation is the fully
linearized BGL equation:

3 3, eEy 3\ 3
(5?+u i a)I‘ "(Xprtos X, t) =~ Zav

s

. Jrs’

Je =16 3/ &’k (e2/m,)n.elkk
= T (2'”)3 lE(k,k'v)l2k4

I (X 13 XY+ 17(0) 5y T (Ko 13 Xo0)]

»

- ‘Zf I ( Xy, 103 X', 1)+ 1*(0) 5~ r'o'(Xo,tO,X' t))

(s Lo (2

mav

i*)]S(k-v—k-v). (181)
Here

2
8EE_Zn,e, 4Wk'_/ d’

~ m, k? ©+kvtie 9o

There are a number of possible objections to this derivation:
(1) It has been shown that the scale length of the probability ball, I}, is Ay, /&'/?
(justified a posteriori from the kinetic equation). In the multiple space scale analysis

F ( Xost0; X, 1).
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given above for f, it was supposed that the inhomogeneity scale length was
O(Ap /¢), which is longer. However, it has already been argued that all that was
required was that the inhomogeneity scale be > Ap.

Hence, the long-timescale variation of T’ | is determined by:

dr, 2

dr m dx |x—x’|.avA°°' (182)
which is precisely the linearized kinetic equation.

(2) It has been argued that the singular initial condition on I' is dissipated by
collisional diffusion: what of the initial condition on A? For a kinetic equation to
exist A must relax to a functional of I, and f, independent of the initial conditions,
on the intermediate timescale. It can be argued that strong stability of the plasma is
sufficient for this to be the case.

(3) The 8¢ terms in the collision integral are somewhat unfamiliar looking and one
might wonder what significance they have. If [ is a local Maxwellian, then the 8¢
term in the collision integral integrates to zero, and one obtains the usual
Fokker-Planck form (Montgomery and Tidman 1964). However, for nonthermal
situations which might be turbulent on the kinetic level such terms are present. Thus
in the hydrodynamic case the 8¢ term makes no contribution to the results, Note,
however, that even with the 8¢ terms the collision operator conserves particle
numbers, momentum and energy. It is worth noting that the collision operator for
the test particle kinetic equation for 2, would not be expected to satisfy momentum
and energy conservation since, momentum and energy can (and will) be transferred
to the field particles.

2.3.5. Hydrodynamic fluctuations in a plasma

Introduction

With a kinetic equation at hand, (181), for (8f8f) [using the Klimontovich
notation (8f(X, 1)8f( X", 1)) for f(X,)I,(X, t; X', 1")] at hand, a theory of hydro-
dynamic fluctuations in a plasma due to particle discreteness can be derived by
considering the hydrodynamic limit, in which length and time scales of interest are
taken to be long compared with the mean free path and mean free time, respectively.
In a magnetized plasma, the perpendicular wavelength need only be large compared
with the Larmor radius.

The results are analogous to those of Landau and Lifshitz (1969) for a one-compo-
nent fluid, but have wider validity. Landau and Lifshitz showed that hydrodynamic
fluctuations of a simple fluid can be described by linearized Navier-Stokes equa-
tions driven by random stresses and heat-flow terms, whose time correlations are
determined by the fluid viscosity and the thermal conductivity, respectively. Hinton
(1970), using a method similar to that to be used here, showed that the
Landau-Lifshitz results are valid, not only in thermal equilibrium, but in any
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nonequilibrium situation where the hydrodynamic equations themselves are valid.
The random stresses and heat flows remain the same as in equilibrium, the
modification is that the Navier-Stokes equations are linearized about the given
nonequilibrium flow, rather than about thermal equilibrium.

Moment equations for the fluctuations

Instead of solving (181) for (8f8f) with initial condition (179) directly, the
following equivalent formal procedure is used. The linearized BGL equation for 8f is
solved, which is written as:

9 9., e 1 .9 re ) @
FPR ax+m(E+c°XB) av]sf =Y (kP +K2), (183)

with initial condition 8f — 8f(X,,) as t - t,, where K has been written for the
linearized collision operator of (181). The autocorrelation may then be computed,
using (179):

(8f"(Xos 10)8f7( X, 10)) = [( Xy, 1o)T1"( Xy, 103 X, 1) (184)
=f"(X,, tO)Brors(X_ Xo)+g (X, X,1). (185)

Attention is thus directed to (183) which is the linearization of the BGL equation for

r

(-;—t + v-% + %(E“’) + % v X Bo)' aav)f’(X, t) = }; (C. (/7 f7), (186)
where

C.(f8)= K, C.(8f, £ )= K3, (187)

K,=KD+K®. (188)

Certain properties of C,,. carry over to K., in particular

re's

fc"’d3o =0,
/m,vC"d% =0,

f %m,&c"d% =0, (189)
imply

fK”'d3v =0,
/m,vK”d3v =0,

f%m,v2K"d3v= 0. (190)
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The properties (189) and (190) arise from the fact that all processes (i.e. ionization,
recombination) that convert particles from one species to another have been ne-
glected.

Moment equations may be constructed from (183) in the same manner as for
(186), that is, by multiplying through by 1, v or mv?/2 and integrating over velocity.
It is clear that if linearized hydrodynamic quantities 8n,, 8u,, 87, etc., are defined in
an appropriate manner, then the equations they satisfy are precisely the linearization
of the moment equations for the macroscopic variables n,, u,,T, etc. The macro-
scopic density n,, velocity u, and temperature 7, are defined, together with the
traceless stress dyadic IT, and heat flux g, of the rth species by

ff,(x,z)d3u=n,(x,t), (191)
/vf’(X,t)d’u=n,(x,t)u,(x,t), (192)
f %m,vvf’(X, t,) d%
=mn,(x,)u,(x,)u,(x,0)+n(x,)T(x, )1+ II(x,1), (193)
and
-%fm,vzvf’(X, do=q,(x, )+ (x,1)u(x,1)
fu(x, t)[%n,(x, DT, (x,0)+ ym w2 (x, t)]. (194)

Rewriting (193) and (194) to obtain explicit expressions gives:

L) = iy 3 /mele - u (e P (X D@, (199)
,(x,1) = [m{{o—u,(x,0)][0-u(x0)]

~ o= u,(x, O]} f"(X, 1) d, (196)

4,(5,0) = [m,Lo=u,(x, 0] [0=u, ()T /(X 1) . (197)

on,, du,, 8T,, 8II, and & g, are defined by linearizing (191)-(194), that is
6n,(x,t)=/8f’(X,t)d3v, (198)
8[n,(x,0)u,(x,0)] =8n,(x,)u,(x,1)+n,(x,1)8u,(x,t)

=fuaf'(x,z)d3u, (199)

6(H,+n,1;l+m,n,u,u,)=fm,waf'd3u, (200)

8 [q, + (%anr + -;-m,urz) u, + H,-u,] = %mf o0?8f7( X, 1) d. (201)
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Rewriting explicitly:
1
8 — _ r 3
u(x,1) n,(x,t)-[[v u,(x,t)]8f7(X,1)d%, (202)
8[n,(x,)T.(x,1)] = == [[o—u,(x,)]*8f7( X, t)d%, (203)
3

and

811, (x, 1) = m, [ { [o=u(x, )] [0 = u,(x.1)]

—%l[v—u,(x,t)]z} 8f"(X,1)d%, (204)

54,0500 =5 f|[o= 5] Lo 01~ D)o xny s

—II.(x,1)*8u(x,t). (205)

Note that (205) differs from Hinton’s (1970) definition of 8 ¢, by the term II, - u,.
However, the above definition of 8¢, would have appeared more naturally in
Hinton’s work, as with this redefinition the fluctuating quantities obey the linearized
moment equations, and it is the above 8 ¢, that is directly related to the fluctuating
temperature gradient. Of course, the moment equations are empty shells until §¢
and 81T are related to the lower moments when the distinction drawn above becomes
academic. One might well ask why it was that on taking moments of the linearized
Boltzmann equation, Hinton did nor obtain linearized moments of the Boltzmann
equation, yet after closing them by a Chapman-Enskog procedure he did obtain the
linearized Navier—Stokes equations? The answer is simply this matter of the defini-
tion of 8 q.

If further the electron—ion friction force R and the electron ion collisional heat
flux @ are defined by:

R= /me(v— u)C,d%, (206)
= %fmc(v— u)’C,d%, (207)

and SR and §Q by:
8R=fme(v—-u)Keid3v, (208)
8Q=% m,(v—u)’ K, d%, (209)

then the moment equations for n, ¥, T may be written as:

dn d
E-ﬁ-a—x“(nu,)—o (210)
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which are the continuity equations,

d ad ad d 1
mn('é?‘i-uia—x’j)uj——gjnT—é‘ZHU-}'en(Ej-l‘ ‘C*(MXB)i)-i-Rj (21])
are the momentum equation for each species, and
a (nmu® 3 a (s 1,
E( >t 5nT)+a—)Ci[(§nT+ 5 hmu )ui +1I1u; + q,]
=enEu;+ Ru,+ Q, (212)

are the energy transport equations.

The first term in (212) represents the rate of change of the total energy density of
particles of a given species, consisting of the kinetic energy 3mu’ and the internal
energy 3nT/2. The divergence term represents the total energy flux containing the
work done by the total pressure tensor ( p/+ IT)+u, the macroscopic energy flux
(31T + imnu?)u, and the microscopic heat flow ¢. The right-hand side contains the
rate of working of the electric field (the magnetic field does no work) enE +u, the
frictional heating R-u, and the heat transfer between species Q. Equations
(210)-(212) are the familiar moment equations for a two-species plasma (Braginskii
1965).

With the definitions (198), (202)-(205), (208), and (209) the equations for én,, du,
and 87, are precisely the linearizations of (210), (211), and (212).

The next step is to close these equations by relating I1,, q,, R,, O to the lower
moments n,, u,, T, and to relate 8II,, 8¢,, SR, and 8Q, to n,, u,T.,8n,8u,dT,
respectively. The basis of this step is the Chapman-Enskog expansion, where one
supposes that the length and time scales of interest are long compared with the mean
free path and mean free time, respectively. It is precisely this regime that is referred
to as hydrodynamic. This process has been carried out in full detail by Braginskii
(1965) for the moments of f. Hinton (1970) has shown, for the case of a neutral gas,
how the solutions of the Chapman-Enskog equations for the moments of f are
related to the solutions of the linearized Chapman-Enskog equations for 8f.

For a neutral gas the transport equations are as follows:

q;=—«xdT/dx,, (213)
6u,- auj 2 Huk
I, = —n(aj‘*‘a;,‘ 300, | @19

The corresponding transport equations for 8 g and 8T were shown by Hinton to be:

d aT Ik

6qi=—KK6T—8KE, 8K'=‘8T5i, (215)
E 3 2, 9 — s
(SH,«j—-—T}(g;;sui'I"a—)Zauj—38ija—-)c,(8uk)—8’r)nij, 871—8T8T.

(216)
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With the appropriate definition of 8 ¢ noted above (205), equations (215) and (216)
are precisely the full linearizations of (213) and (214) which one would intuitively
expect. One can readily show that the same procedure may be carried out in the
plasma case. There are some complications that although not affecting the argument
in any way do muddy the algebra. One additional complication (Braginskii 1965) in
the plasma case is that one may expand the collision integrals in powers of the
square root of the mass ratio (m,/m;)'/2, which even for the hydrogen plasma is a
small number (1,/40). Because of this disparity in masses, the electron and ion
components are much more strongly coupled to themselves than to each other and it
was meaningful to define separate velocities and temperatures to the two compo-
nents. In fact,

T;c: Tu T;i =1 :(me/mi)]/z:(’nc/mi)’

where T, T}, T,;, are respectively the electron, ion, and electron—ion equilibration
times. The fact that there are two interpenetrating fluids with different temperatures
and velocities introduces new transport coefficients not present in the theory of a
simple neutral gas, namely the interspecies friction constant that relates the inter-
species friction force R to their relative velocity (u,— u;=u), and the interspecies
thermal transfer coefficient relating the interspecies thermal flux Q to their tempera-
ture difference (7, — T;).

A further complication (relative to the neutral gas case) is the possible presence of
an external DC magnetic field, which makes the (previously scalar) thermal conduc-
tivity and viscosity tensor quantities, as transport across the magnetic field is
generally inhibited.

These two complications produce a proliferation in the number of transport
coefficients, but have no effect on the general result that fluctuating quantities
84,80,81I1,8R satisfy the full linearization of the equations satisfied by ¢, Q, I1,
and R, respectively.

The transport equations satisfied by ¢, Q, IT, and R are as follows (Braginskii
1965). The subscripts ||, L refer to directions parallel and perpendicular to the
external magnetic field, so that:

u=u +u, (217)
Vx=Vvx+ vV, x, (218)

etc.

The transfer of momentum from the ions to the electrons by collisions R is made
up of two components, the friction force R, and the thermal force R, arising from
the relative velocity and electron temperature gradients respectively.

R=R,+R,, (219)
R,=—ou~o u +abxu, (220)
Rr=-B"v\T,- BV, T.- B*Tb X VT, (221)

where b is a unit vector parallel to the external magnetic field. Thermal forces due to
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ion temperature gradients are negligible compared with the electron thermal force

because of the mass ratio. '
The electron heat flux ¢ similarly consists of two parts:

qc =qcu +ch’ (222)
e, =Bl uy+ B u, + Bl X u, (223)
gr=—XiVL.—xI V. T. = xbX VT.. (224)

The thermal force R, and the Nernst heat flux g, are related by Onsager’s (1931a,
b) reciprocity, which implies that

T _ApT
7;B|'|‘_ Lo Bu.’l ot

One should note that this comes from anti-symmetry [Fhe signs in (221.) and (223) are
opposite] of the kinetic coefficients as u is odd ggder time reversal Whlle. VTe.IS even.
The factor of T, arises because the kinetic coefficients have not been defined in terms
of conjugate forces and fluxes; a point that will be made cllcare_r later..

The stress tensor being traceless and symmetric forms a f1ve—d1meqswnal represen-
tation of the rotation group. The presence of a magnetic field def‘mes' a preferred
axis and the viscosity becomes “nondegenerate,” so there are five independent

(225)

viscosities 7 ; 2,3,4°
= = MoWous ~ mWiap — 12Waap + 1 Wiap + 1:Waagp- (226)

Here
Woap =828y ~105) (3~ 38,
Wias = (85865 + 18.50,8,) W,
Wiap = (855D, + 8" baby.) W,

1
VVMB = %(8ateﬁvv + 813" Eﬂw) va;w >

Wiag = (Bub,Eay, + baby ) 0, W, (227)
are the projections of W,; on the five rotational eigenstates, (E,p) where

8.1ap=Bup ~ buby: (228)
and ¢,4, is the alternating tensor. W, is the rate of strain tensor defined by:

afy

L Y e (229)

=t ——— =8 g
= 9x, " 9x, 3 *0x,
Finally, 0, = A(1/T, —1/T,) relates the interspecies heat transfer to their tempera-

nce. .
mr’le'h(:fi;r:cics labels (i,e) have been omitted as the' abovg bolds f(?r ions and
electrons separately. The tensors (226) are written out in de.ta.ll in Bragmskn (1965,
p. 252) where expressions for the various transport coefficients in tf?rms.of the
plasma parameters are also given (pp. 249-253). It should be noted at this point that
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a,, B., X., 13, and 1, are in one sense not genuine transport coefficients as they are
not associated with dissipative processes—giving heat flow along isotherms, forces
perpendicular to velocity, etc. They arise purely from the gyromotion of the particles
around the field lines, the so-called gyrostresses.

We now have a closed set of equations for the moments 8n,, du,, and 8T, of &f,,
namely the linearization of (210)—(212), (220)-(224) and (226), where it is important
to note that not only n,, u,, and T, are linearized, but also the transport coefficients.
These together with their initial correlations form a complete set of equations from
which to calculate the thermal correlations of any of these hydrodynamic variables.
The initial correlations may readily be computed from (185) by taking moments,
where the contribution of the second term (the screening cloud) can be neglected as
being of order (kAy)? except when computing charge densities where the electron
and ion densities cancel to this order.

The Langevin method

Superficially the method prescribed for the calculation of hydrodynamic correla-
tion functions in a plasma is just that of Onsager and Machlup (1953), as described
in Landau and Lifshitz (1969), that is, the correlation functions satisfy homogeneous
linearized fluid equations with prescribed initial conditions. Indeed, in thermal
equilibrium they are identical prescriptions. However, the derivation from kinetic
theory, rather than from thermodynamics, has shown that the method has a
considerably greater range of validity. Namely: (a) that the method is valid whenever
the hydrodynamic description itself is valid; and (b) the fluctuations remain small
compared with the background quantities. Condition (a) arises in order to validate
the Chapman-Enskog procedure and clearly is necessary for the prescription to
make any sense. Condition (b) is necessary in order not to violate the ordering
assumed in deriving the kinetic equation for the fluctuations. Some comments will
be made later on what might be expected were condition (b) to be violated. (The
magnetized version of the collision operator has not been used. This is all right when
w, /8. >1. However, in the outer edges of fusion discharges, e.g., the inequality is
reversed. Then, the magnetized version of the collision operator should be used. To
our knowledge this has not been done.)

In equilibrium fluctuation theory there are two equivalent prescriptions, the
Onsager method where one solves homogeneous equations with given initial condi-
tions, and the Langevin method where one computes the steady-state response to
driving terms with given correlations. Because the equations are linear, it is clear that
such a correspondence must exist.

There are several ways of deriving the Langevin description from our present
treatment. One method is to postulate the existence of a Langevin linearized BGL
equation for 8f, such that 8f is the steady-state response (or at any rate varying on
the hydrodynamic timescale) to a rapidly fluctuating random source 8.

In the neutral gas case, Bixon and Zwanzig (1969) suggested such a formalism for
thermal equilibrium [see also Fox and Uhlenbeck (1970)] and this was generalized to
nonequilibrium systems by Hinton (1970).
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The autocorrelation of 8S can be readily computed in terms of the initial
correlation of 8f, the result being

(8S( Xy, 15)88( X, 1)y =8(t —15)8(x = x4)2Kof (X, 1) 8(v~ %)

where K, is the linearized (BGL) collision operator. The derivation is entirely
analogous to one which will be given shortly in the context of hydrodynamic
equations.

The moments of 8S can then be related to transport coefficients by relating them
to solutions of Chapman-Enskog integral equations. By taking moments of the
equations for 8/ linearized hydrodynamic equations driven by random source terms
are obtained (which may be identified as random stress and heat flows) with known
correlations. In the neutral gas case (Hinton, 1970) the equations obtained were the
same as those of Landau and Lifshitz (1969) except that the hydrodynamic equa-
tions were linearized about the flow regime in question, not just thermal equilibrium,
and the correlations of the random drivers take the same form in terms of the
transport coefficients, but have their space and time dependence in the general case.

The same procedure as Hinton’s (1970) may be carried out in the plasma case with
the complications mentioned earlier—namely, the possible presence of a DC mag-
netic field and the decoupling of the ions and electrons by the mass ratio expansion.

Another possible method of derivation of the Langevin hydrodynamic equations
is to note that a set of linear equations have been derived for-hydrodynamic
correlation functions with known initial conditions. Since the equations are linear,
the initial value problem may be replaced with a driver problem where the driving
term is chosen so as to reproduce the same correlations. This procedure is readily
carried through, provided the equations are stable. (This is a necessary condition if
the results are to be believed as nonlinear effects must ensue if the correlations grow
sufficiently. In the language of fluid mechanics, we must remain in a subcritical
regime.)

The simplest method of obtaining the actual results without getting tangled in the
details is to use the equilibrium methods of Landau and Lifshitz and generalize them
to nonequilibrium. The justification of this approach is in the kinetic methods
outlined above. The Landau and Lifshitz prescription is as follows:

Let a, be the deviations of the thermodynamic variables from their equilibrium
values. (In our case, density, electron and ion velocities, and temperatures). For
small deviations the relaxation of these quantities to their equilibrium values is given
by a linear relations

da,/ot=—A;a;. (230)
i J7

The rate of entropy generation within the plasma may also be written in terms of
the a,,

E)S/8t=,3,-j('1,-aj, (231)
where
B, = 9%S/3a,da;. \ (232)
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If forces b, “conjugate” to the fluxes a,, are defined by
b, =B, s

(233)
then the transport relation (230) may be rewritten as
da;/dt=—vy,b,, (234)
where
YieBir = >‘fj’ (235)
and
(3S/3t)=(3a,/adt)b,. (236)

This enables the results of the Langevin theory to be stated in their simplest form.

In the Langevin theory the fluctuati iti
ating quantities a, are rega i
random forces ¢, so that I Barded s driven by

<7a,./c91=—'y,kbk+c,-. (237)

It will now be shown that if
the random forces c.(¢
correlations given by (1) are chosen to have

<Ci([0)cj(1)>=(Yij+yji)6(t_to) (238)

the Langevin equations (237) are equivalent to the Onsager prescription

d
5 $ai(t0)a;(10)) + A {a,(15) a, (1)) =0, 1> 1, (239)
with the required initial conditions
a(ty)a () =87"
< ( O)aj( O)) ﬁu (240)
or equivalently
a;(15)b(1,)y=28..
< ( O) J( O)> 61] (241)

by explicitly evaluating the required (c;c;).

<Ci(t0)cj(t)> = (‘sika% + }\1/:)(6;15% + Aj/)(‘zk(fo)a/(f»
which

= (6""6%, + Xik~)(— aje—gf—o +)\je)<ak(to)ae(t)>H(t0 ~1)

using (239) and microscopi - o .
comes ) oscopic reversibility for sufficiently small |t — o], which be-

)
= (SikEO_ + Aik)(aje}\km + 8kmAjc)<am(t0)ae(t)>H(t() - t)
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using (239) with the time arguments exchanged
= (aje}\im + sim>‘jc)(am(to)ae(lo»a([o —1)
=(Yij+7_/i)8(t"’0) (242)

where the fact that 8 is symmetric has been used.

This is the key result of the Langevin theory— that the correlations of the random
forces are given by the transport coefficients v, , connecting the fluxes g, to their
conjugate forces b;.

Onsager (1931) showed that the matrix v, , is symmetric or antisymmetric depend-
ing on the time reversal properties of a; and a ;, being symmetric if g, and a - behave
the same under time reversal. This says that random forces that reverse under time
reversal are uncorrelated with random forces that do not.

An important point to note is that the relation (239) is invariant under linear
transformations of the a,. This is necessary as the a, are undefined to this extent. The
only requirement was that the a, were a complete set of thermodynamic variables for
the system.

To apply this to the two-species plasma an appropriate set of thermodynamic
variables must first be defined. The rate of entropy production is given by (Braginskii
1965)

as 1 1
FT V-(Scneuc + Snu; + 7,9 + f—qi) =0, +0,+4,, (243)
1
Tcoe=_qe. Vln]::—R'u_E"TeaBu/;aB’ (244)
1
T0;=-q;*vInT, — EwiaﬂpViaB7 (245)
1 1
b =04 'f - i‘ > (246)

where § = s.n. + s;n; is the plasma entropy density per unit volume, s, and s, are the
entropy per electron and ion, respectively.

se,i=—z—lnTe‘i—lnne (247)

i
'

Appropriate fluxes are thus ¢,, g;, R, II, .4, II; .5, and Q, which are conjugate to the
forces

1 1 _
VI/T2, VT /T2 5 Weap/ Tos 5 Wian /Tl 1/ T, = 1/ T,),

respectively. Equations (219)-(224), (226) relate the fluxes and forces via the
transport coefficients. The correlations of the random heat flows and stresses may
now be written down using (242) generalized to a continuous system (Landau and
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Lifshitz, 1969).
(04:(% )8 9.(x',1)) = 8 (x = ) 8(t ~ 0272 [ x,.B5 + x, . (1- 5],

(248)

<8qi(x,f)5qi(x’,t')=83(x—x’)6(t~t’)2Ti2[x..i,5l3+XL,»("-/;I;)], (249)
(BR(x,t)SR(x',t’))=83(x—x’)8(t—t')27’c[a”l;l;+al(l—51;)], (250)
(OR(x,1)dq, ;(x', 1)) =0, (251)
<6H;ﬁ(x,t)61f[‘:;(x’,t’))

_ , ) NE 1 1

=475, 5 (x~x)6(t—t)[Eno(babﬂ—§3aﬂ)(b“b,,~§8w)

I 1
- ( 0ol + G Oubbub, + 2 8.k babﬁ) ~ny (8,048, + SBtbab#)]. (252)

If 811, is written in terms of the five independent traceless symmetric tensors, E,

. . 8
in the same way as W, in (227) so that

4
811, = ZosanpﬂB, (253)
pe

then
(8IL; (x, )8IL(x', 1)) = 2T,8%(x ~ x') (1 — )8, 5, ), p.g<2
= 0 otherwise. (254)

The p, g > 3 “components” of the stresses are dissipationless as are ¢, and R, the
corresponding transport coefficients M3,4 X» @, therefore do not appear in the
correlations above.

Finally the correlation of the random interspecies heat flow is given by:
(8Qu(x,1)8Qu(x', 1)) = 228%(x — ) 8(1 ~ /). (255)

An apparent difficulty is that the forces VI, vT, and (1/T, -1/ T;) are not
completely independent, in that given VT., VT, everywhere and T, and T; at one
point, one may compute (1/ T, —1/T,) everywhere. This might lead one to think
that there might be some correlation between 8Q, 84, and 84;,. An analysis of the
situation reveals that the random heat flows 0Q, 8¢, and 84, are not uniquely
definable, but are undetermined to within the following transformation.

8qc—+6qc+8ql, 8qi—>8qi+8q2,

0Q-8Q-v-8q — v-dq,. (256)

This keeps invariant the amount of heat arriving or departing from any small volume
of plasma. § ¢, and 8 ¢; can then be chosen so that the correlations are as given in

(248), (249), and (255), and is the choice that respects the microscopic mechanisms
of heat transfer.
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To summarize the results of the Langevin approach: fluctuating hydrodynamic
variables satisfy the plasma hydrodynamic equations linearized about the flow
regime, driven by random stresses and heat flows whose correlations are known in
terms of the transport coefficients of the plasma. These results are plausible because:
(1) any perturbation to a given flow regime would be expected to satisfy equations
linearized about that regime; (2) the correlations of the driving stresses and heat
flows in complete thermal equilibrium are local quantities and are microscopic in
origin, and one would thus expect them to be substantially the same in a situation of
local thermodynamic equilibrium.
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